TY - JOUR
T1 - The molecular basis of host adaptation in cactophilic drosophila
T2 - Molecular evolution of a glutathione S-transferase gene (GstD1) in Drosophila mojavensis
AU - Matzkin, Luciano M.
PY - 2008/2
Y1 - 2008/2
N2 - Drosophila mojavensis is a cactophilic fly endemic to the northwestern deserts of North America. This species includes four genetically isolated cactus host races each individually specializing on the necrotic tissues of a different cactus species. The necrosis of each cactus species provides the resident D. mojavensis populations with a distinct chemical environment. A previous investigation of the role of transcriptional variation in the adaptation of D. mojavensis to its hosts produced a set of candidate loci that are differentially expressed in response to host shifts, and among them was glutathione S-transferase D1 (GstD1). In both D. melanogaster and Anopheles gambiae, GstD1 has been implicated in the resistance of these species to the insecticide dichloro-diphenyl-trichloroethane (DDT). The pattern of sequence variation of the GstD1 locus from all four D. mojavensis populations, D. arizonae (sister species), and D. navojoa (outgroup) has been examined. The data suggest that in two populations of D. mojavensis GstD1 has gone through a period of adaptive amino acid evolution. Further analyses indicate that of the seven amino acid fixations that occurred in the D. mojavensis lineage, two of them occur in the active site pocket, potentially having a significant effect on substrate specificity and in the adaptation to alternative cactus hosts.
AB - Drosophila mojavensis is a cactophilic fly endemic to the northwestern deserts of North America. This species includes four genetically isolated cactus host races each individually specializing on the necrotic tissues of a different cactus species. The necrosis of each cactus species provides the resident D. mojavensis populations with a distinct chemical environment. A previous investigation of the role of transcriptional variation in the adaptation of D. mojavensis to its hosts produced a set of candidate loci that are differentially expressed in response to host shifts, and among them was glutathione S-transferase D1 (GstD1). In both D. melanogaster and Anopheles gambiae, GstD1 has been implicated in the resistance of these species to the insecticide dichloro-diphenyl-trichloroethane (DDT). The pattern of sequence variation of the GstD1 locus from all four D. mojavensis populations, D. arizonae (sister species), and D. navojoa (outgroup) has been examined. The data suggest that in two populations of D. mojavensis GstD1 has gone through a period of adaptive amino acid evolution. Further analyses indicate that of the seven amino acid fixations that occurred in the D. mojavensis lineage, two of them occur in the active site pocket, potentially having a significant effect on substrate specificity and in the adaptation to alternative cactus hosts.
UR - http://www.scopus.com/inward/record.url?scp=40849124503&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=40849124503&partnerID=8YFLogxK
U2 - 10.1534/genetics.107.083287
DO - 10.1534/genetics.107.083287
M3 - Article
C2 - 18245335
AN - SCOPUS:40849124503
SN - 0016-6731
VL - 178
SP - 1073
EP - 1083
JO - Genetics
JF - Genetics
IS - 2
ER -