TY - JOUR
T1 - The molecular basis of age-related kidney disease.
AU - Zheng, Feng
AU - Plati, Anna Rita
AU - Banerjee, Anita
AU - Elliot, Sharon
AU - Striker, Liliane J.
AU - Striker, Gary E.
PY - 2003/7/23
Y1 - 2003/7/23
N2 - Renal disease affects 11% of people in the United States over the age of 65, not including those with diabetes or hypertension. Although glomerular disease is the most common underlying etiology of age-related renal dysfunction, the cause of glomerular disease and whether it is the only contributor to renal failure are not known. Our studies in female mice show that renal disease in the postmenopausal period is associated with progressive glomerular enlargement and scarring, as well as abnormal renal function. To study the underlying causes of aging-related glomerular disease, we isolated and characterized glomerular smooth muscle (mesangial) cells from female mice of various ages. We found that the cells from older mice exhibit a variety of phenotypic changes, including increased concentrations of p27, a protein that serves to inhibit progression from the G1 to the S phase of the cell cycle. Because the bone marrow (BM) contains mesangial cell progenitors that can transfer the donor glomerular phenotype (normal or diseased) to recipients, we exchanged BM between postmenopausal and premenopausal mice and found that aging-related glomerular enlargement and scarring are transferred to young recipient glomeruli. In addition, BM from normal, young donors led to the regression of aging-related glomerular disease in postmenopausal recipients; namely, both glomerular enlargement and scarring were reduced. Thus, aging-related glomerular disease is an entity distinct from all other causes of renal disease, is characterized by phenotypic changes in mesangial cell progenitors, and is reversible when the phenotype of the progenitors is returned to normal.
AB - Renal disease affects 11% of people in the United States over the age of 65, not including those with diabetes or hypertension. Although glomerular disease is the most common underlying etiology of age-related renal dysfunction, the cause of glomerular disease and whether it is the only contributor to renal failure are not known. Our studies in female mice show that renal disease in the postmenopausal period is associated with progressive glomerular enlargement and scarring, as well as abnormal renal function. To study the underlying causes of aging-related glomerular disease, we isolated and characterized glomerular smooth muscle (mesangial) cells from female mice of various ages. We found that the cells from older mice exhibit a variety of phenotypic changes, including increased concentrations of p27, a protein that serves to inhibit progression from the G1 to the S phase of the cell cycle. Because the bone marrow (BM) contains mesangial cell progenitors that can transfer the donor glomerular phenotype (normal or diseased) to recipients, we exchanged BM between postmenopausal and premenopausal mice and found that aging-related glomerular enlargement and scarring are transferred to young recipient glomeruli. In addition, BM from normal, young donors led to the regression of aging-related glomerular disease in postmenopausal recipients; namely, both glomerular enlargement and scarring were reduced. Thus, aging-related glomerular disease is an entity distinct from all other causes of renal disease, is characterized by phenotypic changes in mesangial cell progenitors, and is reversible when the phenotype of the progenitors is returned to normal.
UR - http://www.scopus.com/inward/record.url?scp=0041886439&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0041886439&partnerID=8YFLogxK
U2 - 10.1126/sageke.2003.29.pe20
DO - 10.1126/sageke.2003.29.pe20
M3 - Article
C2 - 12878780
AN - SCOPUS:0041886439
SN - 1539-6150
VL - 2003
SP - PE20
JO - Science of aging knowledge environment : SAGE KE
JF - Science of aging knowledge environment : SAGE KE
IS - 29
ER -