Abstract
Transitional circumstellar disks around young stellar objects have a distinctive infrared deficit around 10 μm in their spectral energy distributions, recently measured by the Spitzer Infrared Spectrograph (IRS), suggesting dust depletion in the inner regions. These disks have been confirmed to have giant central cavities by imaging of the submillimeter continuum emission using the Submillimeter Array (SMA). However, the polarized near-infrared scattered light images for most objects in a systematic IRS/SMA cross sample, obtained by HiCIAO on the Subaru telescope, show no evidence for the cavity, in clear contrast with SMA and Spitzer observations. Radiative transfer modeling indicates that many of these scattered light images are consistent with a smooth spatial distribution for μm-sized grains, with little discontinuity in the surface density of the μm-sized grains at the cavity edge. Here we present a generic disk model that can simultaneously account for the general features in IRS, SMA, and Subaru observations. Particularly, the scattered light images for this model are computed, which agree with the general trend seen in Subaru data. Decoupling between the spatial distributions of the μm-sized dust and mm-sized dust inside the cavity is suggested by the model, which, if confirmed, necessitates a mechanism, such as dust filtration, for differentiating the small and big dust in the cavity clearing process. Our model also suggests an inwardly increasing gas-to-dust ratio in the inner disk, and different spatial distributions for the small dust inside and outside the cavity, echoing the predictions in grain coagulation and growth models.
Original language | English (US) |
---|---|
Article number | 161 |
Journal | Astrophysical Journal |
Volume | 750 |
Issue number | 2 |
DOIs | |
State | Published - May 10 2012 |
Externally published | Yes |
Keywords
- circumstellar matter
- protoplanetary disks
- radiative transfer
- stars: pre-main sequence
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science