The low permeability of the Earth’s Precambrian crust

Grant Ferguson, Jennifer McIntosh, Oliver Warr, Barbara Sherwood Lollar

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The large volume of deep groundwater in the Precambrian crust has only recently been understood to be relatively hydrogeologically isolated from the rest of the hydrologic cycle. The paucity of permeability measurements in Precambrian crust below 1.3 km is a barrier to modeling fluid flow and solute transport in these low porosity and permeability deep environments. Whether permeability-depth relationships derived from measurements shallower than 1.3 km can be extended to greater depths in unclear. Similarly, application of a widely-used permeability-depth relationship from prograde metamorphic and geothermal systems to deep Precambrian rocks may not be appropriate. Here, we constrain permeabilities for Precambrian crust to depths of 3.3 km based on fluid residence times estimated from noble gas analyses. Our analysis shows no statistically significant relationship between permeability and depth where only samples below 1 km are considered, challenging previous assumptions of exponential decay. Additionally, we show that estimated permeabilities at depths >1 km are at least an order of magnitude lower than some previous estimates and possibly much lower. As a consequence, water and solute fluxes at these depths will be extremely limited, imposing important controls on elemental cycling, distribution of subsurface microbial life and connections with the near-surface water cycle.

Original languageEnglish (US)
Article number323
JournalCommunications Earth and Environment
Volume4
Issue number1
DOIs
StatePublished - Dec 2023

ASJC Scopus subject areas

  • General Environmental Science
  • General Earth and Planetary Sciences

Fingerprint

Dive into the research topics of 'The low permeability of the Earth’s Precambrian crust'. Together they form a unique fingerprint.

Cite this