Abstract
This chapter discusses the inverse monodromy transform, explaining how it is a canonical transformation. The Inverse Monodromy Transform (IMT) parallels the Inverse Scattering Transform (IST). The finite dimensional solution manifold for these flows is not necessarily compact, not a torus, and so the KAM theorem does not directly apply. The potential connection between a possible preservation of the solution manifold and the preservation of the Painleve property is an intriguing one. Now the contours are the same as those used in the integral definitions of Airy functions.
Original language | English (US) |
---|---|
Pages (from-to) | 65-89 |
Number of pages | 25 |
Journal | North-Holland Mathematics Studies |
Volume | 61 |
Issue number | C |
DOIs | |
State | Published - Jan 1 1982 |
ASJC Scopus subject areas
- General Mathematics