TY - JOUR
T1 - The Impact of Realistic Red Supergiant Mass Loss on Stellar Evolution
AU - Beasor, Emma R.
AU - Davies, Ben
AU - Smith, Nathan
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
PY - 2021/11/20
Y1 - 2021/11/20
N2 - Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 and 30M⊙the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new Ṁ prescription calibrated to RSGs with initial masses between 10 and 25 M⊙, which unlike previous prescriptions does not overestimate Ṁ for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass loss by recomputing the evolution of stars with masses 12-27 M⊙ with the new Ṁ-prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30 M⊙ to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.
AB - Accurate mass-loss rates are essential for meaningful stellar evolutionary models. For massive single stars with initial masses between 8 and 30M⊙the implementation of cool supergiant mass loss in stellar models strongly affects the resulting evolution, and the most commonly used prescription for these cool-star phases is that of de Jager. Recently, we published a new Ṁ prescription calibrated to RSGs with initial masses between 10 and 25 M⊙, which unlike previous prescriptions does not overestimate Ṁ for the most massive stars. Here, we carry out a comparative study to the MESA-MIST models, in which we test the effect of altering mass loss by recomputing the evolution of stars with masses 12-27 M⊙ with the new Ṁ-prescription implemented. We show that while the evolutionary tracks in the HR diagram of the stars do not change appreciably, the mass of the H-rich envelope at core collapse is drastically increased compared to models using the de Jager prescription. This increased envelope mass would have a strong impact on the Type II-P SN lightcurve, and would not allow stars under 30 M⊙ to evolve back to the blue and explode as H-poor SN. We also predict that the amount of H-envelope around single stars at explosion should be correlated with initial mass, and we discuss the prospects of using this as a method of determining progenitor masses from supernova light curves.
UR - http://www.scopus.com/inward/record.url?scp=85120427362&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85120427362&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ac2574
DO - 10.3847/1538-4357/ac2574
M3 - Article
AN - SCOPUS:85120427362
SN - 0004-637X
VL - 922
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 55
ER -