The fountain hills unique CB chondrite: Insights into thermal processes on the CB parent body

Dante S. Lauretta, Julia S. Goreva, Dolores H. Hill, Marvin Killgore, Alyssa R. La Blue, Andrew Campbell, R. C. Greenwood, A. B. Verchovsky, Ian A. Franchi

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O-isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine-grained matrix suggests that Fountain Hills formed in a dust-poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near-CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10-3 bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine-spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type-4 ordinary chondrites.

Original languageEnglish (US)
Pages (from-to)823-838
Number of pages16
JournalMeteoritics and Planetary Science
Volume44
Issue number6
DOIs
StatePublished - 2009

ASJC Scopus subject areas

  • Geophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The fountain hills unique CB chondrite: Insights into thermal processes on the CB parent body'. Together they form a unique fingerprint.

Cite this