TY - JOUR
T1 - The formation of Ganymede's grooved terrain
T2 - Numerical modeling of extensional necking instabilities
AU - Bland, Michael T.
AU - Showman, Adam P.
N1 - Funding Information:
M.T.B. and A.P.S. thank H.J. Melosh, E. Turtle, and G. Collins for useful discussions. We also thank A.J. Dombard and G. Collins for thorough reviews of the manuscript, which significantly strengthened this paper. This research was supported by NASA PG&G grant #NNG04GI46G and NSF grant #AST-0307664.
PY - 2007/8
Y1 - 2007/8
N2 - Ganymede's grooved terrain likely formed during an epoch of global expansion, when unstable extension of the lithosphere resulted in the development of periodic necking instabilities. Linear, infinitesimal-strain models of extensional necking support this model of groove formation, finding that the fastest growing modes of an instability have wavelengths and growth rates consistent with Ganymede's grooves. However, several questions remain unanswered, including how nonlinearities affect instability growth at large strains, and what role instabilities play in tectonically resurfacing preexisting terrain. To address these questions we numerically model the extension of an icy lithosphere to examine the growth of periodic necking instabilities over a broad range of strain rates and temperature gradients. We explored thermal gradients up to 45 K km-1 and found that, at infinitesimal strain, maximum growth rates occur at high temperature gradients (45 K km-1) and moderate strain rates (10-13 s-1). Dominant wavelengths range from 1.8 to 16.4 km (post extension). Our infinitesimal growth rates are qualitatively consistent with, but an order of magnitude lower than, previous linearized calculations. When strain exceeds ∼ 10 % growth rates decrease, limiting the total amount of amplification that can result from unstable extension. This fall-off in growth occurs at lower groove amplitudes for high-temperature-gradient, thin-lithosphere simulations than for low-temperature-gradient, thick-lithosphere simulations. At large strains, this shifts the ideal conditions for producing large amplitude grooves from high temperature gradients to more moderate temperature gradients (15 K km-1). We find that the formation of periodic necking instabilities can modify preexisting terrain, replacing semi-random topography up to 100 m in amplitude with periodic ridges and troughs, assisting the tectonic resurfacing process. Despite this success, the small topographic amplification produced by our model presents a formidable challenge to the necking instability mechanism for groove formation. Success of the necking instability mechanism may require rheological weakening or strain localization by faulting, effects not included in our analysis.
AB - Ganymede's grooved terrain likely formed during an epoch of global expansion, when unstable extension of the lithosphere resulted in the development of periodic necking instabilities. Linear, infinitesimal-strain models of extensional necking support this model of groove formation, finding that the fastest growing modes of an instability have wavelengths and growth rates consistent with Ganymede's grooves. However, several questions remain unanswered, including how nonlinearities affect instability growth at large strains, and what role instabilities play in tectonically resurfacing preexisting terrain. To address these questions we numerically model the extension of an icy lithosphere to examine the growth of periodic necking instabilities over a broad range of strain rates and temperature gradients. We explored thermal gradients up to 45 K km-1 and found that, at infinitesimal strain, maximum growth rates occur at high temperature gradients (45 K km-1) and moderate strain rates (10-13 s-1). Dominant wavelengths range from 1.8 to 16.4 km (post extension). Our infinitesimal growth rates are qualitatively consistent with, but an order of magnitude lower than, previous linearized calculations. When strain exceeds ∼ 10 % growth rates decrease, limiting the total amount of amplification that can result from unstable extension. This fall-off in growth occurs at lower groove amplitudes for high-temperature-gradient, thin-lithosphere simulations than for low-temperature-gradient, thick-lithosphere simulations. At large strains, this shifts the ideal conditions for producing large amplitude grooves from high temperature gradients to more moderate temperature gradients (15 K km-1). We find that the formation of periodic necking instabilities can modify preexisting terrain, replacing semi-random topography up to 100 m in amplitude with periodic ridges and troughs, assisting the tectonic resurfacing process. Despite this success, the small topographic amplification produced by our model presents a formidable challenge to the necking instability mechanism for groove formation. Success of the necking instability mechanism may require rheological weakening or strain localization by faulting, effects not included in our analysis.
KW - Ganymede
KW - Ices
KW - Jupiter
KW - Satellites
KW - Tectonics
KW - satellites
KW - surfaces
UR - http://www.scopus.com/inward/record.url?scp=34447253077&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34447253077&partnerID=8YFLogxK
U2 - 10.1016/j.icarus.2007.01.012
DO - 10.1016/j.icarus.2007.01.012
M3 - Article
AN - SCOPUS:34447253077
SN - 0019-1035
VL - 189
SP - 439
EP - 456
JO - Icarus
JF - Icarus
IS - 2
ER -