TY - JOUR
T1 - The follicle-deplete mouse ovary produces androgen
AU - Mayer, Loretta P.
AU - Devine, Patrick J.
AU - Dyer, Cheryl A.
AU - Hoyer, Patricia B.
PY - 2004/7
Y1 - 2004/7
N2 - The follicle-depleted postmenopausal ovary is enriched in interstitial cells that produce androgens. This study was designed to cause follicle depletion in mice using the industrial chemical, 4-vinylcyclohexene diepoxide (VCD), and characterize the steroidogenic capacity of cells in the residual ovarian tissue. From a dose-finding study, the optimal daily concentration of VCD was determined to be 160 mg/kg. Female B6C3F1 immature mice were treated daily with vehicle control or VCD (160 mg kg-1 day -1, 15 days, i.p.). Ovaries were removed and processed for histological evaluation. On Day 15 following onset of treatment, primordial follicles were depleted and primary follicles were reduced to about 10% of controls. On Day 46, primary follicles were depleted and secondary and antral follicles were reduced to 0.7% and 2.6% of control, respectively. Seventy-five percent of treated mice displayed disruptions in estrous cyclicity. All treated mice were in persistent diestrus (acyclic) by Day 58. Plasma FSH levels were increased (P < 0.05) relative to controls on Day 37 and had plateaued by Day 100. Relative to age-matched cyclic controls, by Day 127, the significant differences in VCD-treated mice included reduced ovarian and uterine weights, elevated plasma LH and FSH, and reduced plasma progesterone and androstenedione. Furthermore, plasma 17β-estradiol levels were nondetectable. Unlike controls, immunostaining for LH receptor, and the high density lipoprotein receptor (SR-BI), was diffuse in ovarian sections from VCD-treated animals. Ovaries from Day 120 control and VCD-treated animals were dissociated and dispersed cells were placed in culture. Cultured cells from ovaries of VCD-treated animals produced less LH-stimulated progesterone than control cells. Androstenedione production was nondetectable in cells from cyclic control animals. Conversely, cells from VCD-treated animals produced androstenedione that was doubled in the presence of insulin and LH (1 and 3 ng/ml). Collectively, these data demonstrate that VCD-mediated follicle depletion results in residual ovarian tissue that may be analogous to the follicle-deplete postmenopausal ovary. This may serve as a useful animal model to examine the dynamics of follicle loss in women as ovarian senescence ensues.
AB - The follicle-depleted postmenopausal ovary is enriched in interstitial cells that produce androgens. This study was designed to cause follicle depletion in mice using the industrial chemical, 4-vinylcyclohexene diepoxide (VCD), and characterize the steroidogenic capacity of cells in the residual ovarian tissue. From a dose-finding study, the optimal daily concentration of VCD was determined to be 160 mg/kg. Female B6C3F1 immature mice were treated daily with vehicle control or VCD (160 mg kg-1 day -1, 15 days, i.p.). Ovaries were removed and processed for histological evaluation. On Day 15 following onset of treatment, primordial follicles were depleted and primary follicles were reduced to about 10% of controls. On Day 46, primary follicles were depleted and secondary and antral follicles were reduced to 0.7% and 2.6% of control, respectively. Seventy-five percent of treated mice displayed disruptions in estrous cyclicity. All treated mice were in persistent diestrus (acyclic) by Day 58. Plasma FSH levels were increased (P < 0.05) relative to controls on Day 37 and had plateaued by Day 100. Relative to age-matched cyclic controls, by Day 127, the significant differences in VCD-treated mice included reduced ovarian and uterine weights, elevated plasma LH and FSH, and reduced plasma progesterone and androstenedione. Furthermore, plasma 17β-estradiol levels were nondetectable. Unlike controls, immunostaining for LH receptor, and the high density lipoprotein receptor (SR-BI), was diffuse in ovarian sections from VCD-treated animals. Ovaries from Day 120 control and VCD-treated animals were dissociated and dispersed cells were placed in culture. Cultured cells from ovaries of VCD-treated animals produced less LH-stimulated progesterone than control cells. Androstenedione production was nondetectable in cells from cyclic control animals. Conversely, cells from VCD-treated animals produced androstenedione that was doubled in the presence of insulin and LH (1 and 3 ng/ml). Collectively, these data demonstrate that VCD-mediated follicle depletion results in residual ovarian tissue that may be analogous to the follicle-deplete postmenopausal ovary. This may serve as a useful animal model to examine the dynamics of follicle loss in women as ovarian senescence ensues.
KW - Aging
KW - Interstitial cells
KW - Steroid hormones
KW - Theca cells
UR - http://www.scopus.com/inward/record.url?scp=3142685263&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=3142685263&partnerID=8YFLogxK
U2 - 10.1095/biolreprod.103.016113
DO - 10.1095/biolreprod.103.016113
M3 - Article
C2 - 14998904
AN - SCOPUS:3142685263
SN - 0006-3363
VL - 71
SP - 130
EP - 138
JO - Biology of reproduction
JF - Biology of reproduction
IS - 1
ER -