The first precise molecular structure of a monomeric transition metal cyanide, copper(I) cyanide

Douglas B. Grotjahn, M. A. Brewster, Lucy M. Ziurys

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

Copper(I) cyanide is an important reagent in organic, organometallic, and supramolecular chemistry because of both the copper center and the versatile cyanide ligand. Solid-phase CuCN and many of its derivatives show oligomeric or polymeric structures, a trait shared by other metal cyanides. Often, it is difficult to specify the orientation of the cyano ligand in an X-ray structure. Here the first preparation and precise structure of a monomeric transition metal cyanide is reported. Gas-phase reaction between copper vapor and cyanogen (NCCN) clearly gives CuCN (not CuNC). The precise structure of CuCN so produced is determined by millimeter/submillimeter-wave spectroscopy. Because of the highly efficient synthesis and the presence of significant amounts of two copper isotopes, such strong signals were seen that natural-abundance materials allowed observation of transitions for the four isotopomers 63Cu12C14N, 65Cu12C14N, 63Cu13C14N, and 63Cu12C15N and the determination of ro, r, and rm(2)structures. All data unequivocally show a linear geometry and that the carbon of cyanide is bound to copper with a Cu-C distance of 1.82962(4) Å in the structure, which is likely to be closest to the equilibrium geometry.

Original languageEnglish (US)
Pages (from-to)5895-5901
Number of pages7
JournalJournal of the American Chemical Society
Volume124
Issue number20
DOIs
StatePublished - May 22 2002

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'The first precise molecular structure of a monomeric transition metal cyanide, copper(I) cyanide'. Together they form a unique fingerprint.

Cite this