The evolution of bet-hedging adaptations to rare scenarios

Oliver D. King, Joanna Masel

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

When faced with a variable environment, organisms may switch between different strategies according to some probabilistic rule. In an infinite population, evolution is expected to favor the rule that maximizes geometric mean fitness. If some environments are encountered only rarely, selection may not be strong enough for optimal switching probabilities to evolve. Here we calculate the evolution of switching probabilities in a finite population by analyzing fixation probabilities of alleles specifying switching rules. We calculate the conditions required for the evolution of phenotypic switching as a form of bet-hedging as a function of the population size N, the rate θ at which a rare environment is encountered, and the selective advantage s associated with switching in the rare environment. We consider a simplified model in which environmental switching and phenotypic switching are one-way processes, and mutation is symmetric and rare with respect to the timescale of fixation events. In this case, the approximate requirements for bet-hedging to be favored by a ratio of at least R are that sN>log(R) and θ N > sqrt(R) .

Original languageEnglish (US)
Pages (from-to)560-575
Number of pages16
JournalTheoretical Population Biology
Volume72
Issue number4
DOIs
StatePublished - Dec 2007

Keywords

  • Evolutionarily stable strategy
  • Evolutionary capacitance
  • Evolvability
  • Extinction
  • Fluctuating environment
  • Frequency-dependent selection
  • Moran model
  • Phenotypic plasticity
  • Population genetics

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics

Fingerprint

Dive into the research topics of 'The evolution of bet-hedging adaptations to rare scenarios'. Together they form a unique fingerprint.

Cite this