## Abstract

The equilibrium shape and stability of menisci formed at the contact line between two vertically aligned cylinders were investigated by developing a general bifurcation analysis from the classic equation of Young-Laplace. It was found that the maximum amount of liquid that can be held at the contact line is determined by the existence of a bifurcation of the equilibrium solutions. The onset of instability is characterized by a translationally symmetric bifurcation that always precedes the instability to asymmetric perturbations. The maximum stable liquid retention is a strong function of the ratio of gravitational to surface tension forces, indicating that gravity acts as a destabilizing force. The effect of contact angle on the maximum liquid retention is more complex: when the gravitational effects are small, an increase in contact angle results in a decrease in liquid retention; on the other hand, when the gravitational effects are appreciable, a maximum value of the liquid retention is obtained for intermediate values of the contact angle.

Original language | English (US) |
---|---|

Pages (from-to) | 357-378 |

Number of pages | 22 |

Journal | Journal of Fluid Mechanics |

Volume | 176 |

DOIs | |

State | Published - Mar 1987 |

Externally published | Yes |

## ASJC Scopus subject areas

- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Applied Mathematics