Abstract
This paper presents results of physical as well as psychophysical evaluations of an LCD with respect to its spatial noise. Spatial noise is quantified using a high-resolution CCD camera and a method is developed to compensate for it. This compensation method is based on a spatial noise map, derived from the CCD camera images, and on the application of an error diffusion algorithm. This method of noise compensation reduces the spatial noise by about a factor of 2. Psychophysical evaluation is performed in order to explore the dependence of human contrast sensitivity on display spatial noise. This evaluation uses the two-alternative forced choice (2-AFC) method. Aperiodic Gaussian-shaped objects, which simulate lung nodules, serve as stimuli. The detectability index, d', calculated indicates that spatial noise compensation leads to a lower contrast threshold.
Original language | English (US) |
---|---|
Article number | 59 |
Pages (from-to) | 538-548 |
Number of pages | 11 |
Journal | Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
Volume | 5749 |
DOIs | |
State | Published - 2005 |
Event | Medical Imaging 2005 - Image Perception, Observer Performance, and Technology Assessment - San Diego, CA, United States Duration: Feb 15 2005 → Feb 17 2005 |
Keywords
- Error diffusion
- LCD
- Spatial noise
- Two-alternative forced choice
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Biomaterials
- Radiology Nuclear Medicine and imaging