The effect of solar tracking resolution to the defocus of a giant fresnel lens for a solar stove

Peter Kane, Matthew Mokler, Peiwen Li, Ricardo G. Sanfelice

Research output: Contribution to conferencePaperpeer-review

Abstract

A solar stove using a giant Fresnel lens has been developed in the Energy and Fuel Cell Laboratory at the University of Arizona. Solar tracking is required to control the Fresnel lens to maintain a stationary focal point on the heat transfer surface of the solar stove. A two-axis passive control system for solar tracking is adopted. Characteristics of the optical system are analyzed in order to find a reasonable tracking and adjustment frequency and overall system control accuracy. Defocus of the lens due to the angular offset (related to tracking resolution) of the lens' axis versus the sunray and the change of the shape of the focal point on a static plate is calculated. The results of the analysis are used in the design of the control algorithm which has been implemented in the control system of the prototype solar stove. The proposed tracking scheme is expected to improve heat collection, thermal protection and thereby reduction of heat loss in the solar stove.

Original languageEnglish (US)
Pages327-332
Number of pages6
DOIs
StatePublished - 2012
EventASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology - San Diego, CA, United States
Duration: Jul 23 2012Jul 26 2012

Other

OtherASME 2012 6th International Conference on Energy Sustainability, ES 2012, Collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology
Country/TerritoryUnited States
CitySan Diego, CA
Period7/23/127/26/12

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'The effect of solar tracking resolution to the defocus of a giant fresnel lens for a solar stove'. Together they form a unique fingerprint.

Cite this