The deformable mirror demonstration mission (DeMi) CubeSat: Optomechanical design validation and laboratory calibration

Gregory Allan, Ewan S. Douglas, Derek Barnes, Mark Egan, Gabor Furesz, Warren Grunwald, Jennifer Gubner, Christian Haughwout, Bobby G. Holden, Paula Do Vale Pereira, Abigail J. Stein, Kerri L. Cahoy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Coronagraphs on future space telescopes will require precise wavefront correction to detect Earth-like exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide wavefront control with low size, weight, and power. The Deformable Mirror Demonstration Mission (DeMi) payload will demonstrate a 140 actuator MEMS Deformable Mirror (DM) with 5:5 μm maximum stroke. We present the flight optomechanical design, lab tests of the flight wavefront sensor and wavefront reconstructor, and simulations of closed-loop control of wavefront aberrations. We also present the compact flight DM controller, capable of driving up to 192 actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3 compute modules are used for task management and wavefront reconstruction. The spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for 2019.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2018
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsGiovanni G. Fazio, Howard A. MacEwen, Makenzie Lystrup
PublisherSPIE
ISBN (Print)9781510619494
DOIs
StatePublished - 2018
Externally publishedYes
EventSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave - Austin, United States
Duration: Jun 10 2018Jun 15 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10698
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave
Country/TerritoryUnited States
CityAustin
Period6/10/186/15/18

Keywords

  • Deformable mirrors
  • Exoplanets
  • High-contrast imaging
  • MEMS
  • Wavefront sensing

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The deformable mirror demonstration mission (DeMi) CubeSat: Optomechanical design validation and laboratory calibration'. Together they form a unique fingerprint.

Cite this