TY - JOUR
T1 - The de novo production of drosophilin A (tetrachloro-4-methoxyphenol) and drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by ligninolytic basidiomycetes
AU - Teunissen, P. J.M.
AU - Swarts, H. J.
AU - Field, J. A.
N1 - Funding Information:
Acknowledgements The investigation reported here was supported by the Life Science Foundation (SLW), which is subsidized by the Netherlands Organisation for Scientific Research (NWO).
PY - 1997
Y1 - 1997
N2 - Ligninolytic basidiomycetes were screened for their ability to produce the tetrachlorinated hydroquinone metabolites drosophilin A (DA, tetrachloro- 4-methoxyphenol) and drosophilin A methyl ether (DAME, tetrachloro-1,4- dimethoxybenzene). Five fungal strains produced these metabolites in detectable amounts, including strains from Bjerkandera and Peniophora, which are genera not previously known for DA or DAME production. Phellinus fastuosus ATCC26.125 had the highest and most reliable production of DA and DAM E in peptone medium, respectively 15-60 μM and 4-40 μM. This fungus was used to study culture conditions that could increase DAME production. A fourfold increase in DAME production was found after the addition of hydroquinone to growing cultures of P. fastuosus. Therefore, hydroquinone is postulated to be a possible biosynthetic precursor of DAME in the fungus. Antagonising P. fastuosus by adding filter-sterilised culture fluid of a competing fungus. Phlebia radiata, increased DAME production significantly by tenfold. This result suggests that DAM E production is elicited by compounds present in the culture fluid of P. radiata, indicating that DAME has an antibiotic function in P. fastuosus.
AB - Ligninolytic basidiomycetes were screened for their ability to produce the tetrachlorinated hydroquinone metabolites drosophilin A (DA, tetrachloro- 4-methoxyphenol) and drosophilin A methyl ether (DAME, tetrachloro-1,4- dimethoxybenzene). Five fungal strains produced these metabolites in detectable amounts, including strains from Bjerkandera and Peniophora, which are genera not previously known for DA or DAME production. Phellinus fastuosus ATCC26.125 had the highest and most reliable production of DA and DAM E in peptone medium, respectively 15-60 μM and 4-40 μM. This fungus was used to study culture conditions that could increase DAME production. A fourfold increase in DAME production was found after the addition of hydroquinone to growing cultures of P. fastuosus. Therefore, hydroquinone is postulated to be a possible biosynthetic precursor of DAME in the fungus. Antagonising P. fastuosus by adding filter-sterilised culture fluid of a competing fungus. Phlebia radiata, increased DAME production significantly by tenfold. This result suggests that DAM E production is elicited by compounds present in the culture fluid of P. radiata, indicating that DAME has an antibiotic function in P. fastuosus.
UR - http://www.scopus.com/inward/record.url?scp=0030849659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0030849659&partnerID=8YFLogxK
U2 - 10.1007/s002530050997
DO - 10.1007/s002530050997
M3 - Article
C2 - 9237391
AN - SCOPUS:0030849659
SN - 0175-7598
VL - 47
SP - 695
EP - 700
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 6
ER -