The connection between galaxies and dark matter structures in the local universe

Rachel M. Reddick, Risa H. Wechsler, Jeremy L. Tinker, Peter S. Behroozi

Research output: Contribution to journalArticlepeer-review

313 Scopus citations


We provide new constraints on the connection between galaxies in the local universe, identified by the Sloan Digital Sky Survey, and dark matter halos and their constituent substructures in the Λ-cold dark matter model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (1) which halo property is most closely associated with galaxy stellar masses and luminosities, (2) how much scatter is in this relationship, and (3) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 ± 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy-halo connection can be modeled with sufficient fidelity for future precision studies of the dark universe.

Original languageEnglish (US)
Article number30
JournalAstrophysical Journal
Issue number1
StatePublished - Jul 1 2013
Externally publishedYes


  • dark matter
  • galaxies: formation
  • galaxies: groups: general
  • galaxies: halos
  • large-scale structure of universe
  • methods: statistical

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'The connection between galaxies and dark matter structures in the local universe'. Together they form a unique fingerprint.

Cite this