The Black Hole Explorer: Instrument System Overview

Daniel P. Marrone, Janice Houston, Kazunori Akiyama, Bryan Bilyeu, Don Boroson, Paul Grimes, Kari Haworth, Robert Lehmensiek, Eliad Peretz, Hannah Rana, Laura C. Sinclair, Sridharan Tirupati Kumara, Ranjani Srinivasan, Edward Tong, Jade Wang, Jonathan Weintroub, Michael D. Johnson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

The Black Hole Explorer (BHEX) is a space very-long-baseline interferometry (VLBI) mission concept that is currently under development. BHEX will study supermassive black holes at unprecedented resolution, isolating the signature of the “photon ring” — light that has orbited the black hole before escaping — to probe physics at the edge of the observable universe. It will also measure black hole spins, study the energy extraction and acceleration mechanisms for black hole jets, and characterize the black hole mass distribution. BHEX achieves high angular resolution by joining with ground-based millimeter-wavelength VLBI arrays, extending the size, and therefore improving the angular resolution of the earthbound telescopes. Here we discuss the science instrument concept for BHEX. The science instrument for BHEX is a dual-band, coherent receiver system for 80-320 GHz, coupled to a 3.5-meter antenna. BHEX receiver front end will observe simultaneously with dual polarizations in two bands, one sampling 80-106 GHz and one sampling 240-320 GHz. An ultra-stable quartz oscillator provides the master frequency reference and ensures coherence for tens of seconds. To achieve the required sensitivity, the front end will instantaneously receive 32 GHz of frequency bandwidth, which will be digitized to 64 Gbits/sec of incompressible raw data. These data will be buffered and transmitted to the ground via laser data link, for correlation with data recorded simultaneously at radio telescopes on the ground. We describe the challenges associated with the instrument concept and the solutions that have been incorporated into the baseline design.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2024
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsLaura E. Coyle, Shuji Matsuura, Marshall D. Perrin
PublisherSPIE
ISBN (Electronic)9781510675070
DOIs
StatePublished - 2024
EventSpace Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave - Yokohama, Japan
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13092
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSpace Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave
Country/TerritoryJapan
CityYokohama
Period6/16/246/22/24

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The Black Hole Explorer: Instrument System Overview'. Together they form a unique fingerprint.

Cite this