The Black Hole Explorer (BHEX): Preliminary Antenna Design

T. K. Sridharan, R. Lehmensiek, D. Marrone, P. Cheimets, M. Freeman, P. Galison, J. Houston, M. Johnson, M. Silver

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We present the basic design of a large, light weight, spaceborne antenna for the Black Hole Explorer (BHEX) space Very Long Baseline Interferometry (space-VLBI) mission, achieving high efficiency operation at mm/sub-mm wavelengths. An introductory overview of the mission and its science background are provided. The BHEX mission targets fundamental black hole physics and astrophysics enabled by the detection of the finely structured image feature around black holes known as the photon ring, theoretically expected due to light orbiting the black hole before reaching the observer. Interferometer baselines much longer than an earth diameter are necessary to attain the spatial resolution required to detect the photon ring, leading to a space component. The science goals require high sensitivity observations at mm/sub-mm wavelengths, placing stringent constraints on antenna performance. The design approach described, seeks to balance the antenna aperture, volume and mass constraints of the NASA Explorers mission opportunity profile and the desired high performance. A 3.5 m aperture with a 40 µm surface rms is targeted. Currently, a symmetric, dual reflector, axially displaced ellipse (Gregorian ring focus) optical design and metallized carbon fiber reinforced plastic (CFRP) sandwich construction have been chosen to deliver high efficiency and light weight. Further exploration of design choices and parameter space and reflector shaping studies are in progress.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2024
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsLaura E. Coyle, Shuji Matsuura, Marshall D. Perrin
PublisherSPIE
ISBN (Electronic)9781510675070
DOIs
StatePublished - 2024
EventSpace Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave - Yokohama, Japan
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13092
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSpace Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave
Country/TerritoryJapan
CityYokohama
Period6/16/246/22/24

Keywords

  • axially displaced ellipse antenna
  • black hole
  • light weight antenna
  • mm/sub-mm space antenna
  • photon ring
  • space-VLBI

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The Black Hole Explorer (BHEX): Preliminary Antenna Design'. Together they form a unique fingerprint.

Cite this