TY - JOUR
T1 - The BH3 mimetic ABT-737 induces cancer cell senescence
AU - Song, Jin H.
AU - Kandasamy, Karthikeyan
AU - Zemskova, Marina
AU - Lin, Ying Wei
AU - Kraft, Andrew S.
PY - 2011/1/15
Y1 - 2011/1/15
N2 - ABT-737, a small molecule cell-permeable Bcl-2 antagonist that acts by mimicking BH3 proteins, induces apoptotic cell death in multiple cancer types. However, when incubated with this agent many solid tumor cell lines do not undergo apoptosis. The current study reveals a novel mechanism whereby ABT-737 when added to apoptosis-resistant cancer cells has profound biologic effects. In PV-10 cells, a renal cell carcinoma that does not die after ABT-737 treatment, this agent induces a two-fold change in the transcription of nearly 430 genes. Many of these induced mRNA changes are in secreted proteins, IL-6, IL-8, and IL-11 and chemokines CXCL2 and CXCL5, or genes associated with an "inflammatory" phenotype. Strikingly, these gene changes are highly similar to those changes previously identified in cellular senescence. Brief exposure of apoptosis-resistant renal, lung and prostate cancer cell lines to ABT-737, although not capable of inducing cell death, causes the induction of senescence-associated β-galactosidase and inhibition of cell growth consistent with the induction of cellular senescence. Evidence indicates that the induction of senescence occurs as a result of reactive oxygen species elevation followed by low-level activation of the caspase cascade, insufficient to induce apoptosis, but sufficient to lead to minor DNA damage and increases in p53, p21, IL-6 and 8 proteins. By overexpression of a dominantnegative p53 protein, we show that ABT-737-induced cellular senescence is p53-dependent. Thus, in multiple cancer types in which ABT-737 is incapable of causing cell death, ABT-737 may have additional cellular activities that make its use as an anticancer agent highly attractive.
AB - ABT-737, a small molecule cell-permeable Bcl-2 antagonist that acts by mimicking BH3 proteins, induces apoptotic cell death in multiple cancer types. However, when incubated with this agent many solid tumor cell lines do not undergo apoptosis. The current study reveals a novel mechanism whereby ABT-737 when added to apoptosis-resistant cancer cells has profound biologic effects. In PV-10 cells, a renal cell carcinoma that does not die after ABT-737 treatment, this agent induces a two-fold change in the transcription of nearly 430 genes. Many of these induced mRNA changes are in secreted proteins, IL-6, IL-8, and IL-11 and chemokines CXCL2 and CXCL5, or genes associated with an "inflammatory" phenotype. Strikingly, these gene changes are highly similar to those changes previously identified in cellular senescence. Brief exposure of apoptosis-resistant renal, lung and prostate cancer cell lines to ABT-737, although not capable of inducing cell death, causes the induction of senescence-associated β-galactosidase and inhibition of cell growth consistent with the induction of cellular senescence. Evidence indicates that the induction of senescence occurs as a result of reactive oxygen species elevation followed by low-level activation of the caspase cascade, insufficient to induce apoptosis, but sufficient to lead to minor DNA damage and increases in p53, p21, IL-6 and 8 proteins. By overexpression of a dominantnegative p53 protein, we show that ABT-737-induced cellular senescence is p53-dependent. Thus, in multiple cancer types in which ABT-737 is incapable of causing cell death, ABT-737 may have additional cellular activities that make its use as an anticancer agent highly attractive.
UR - http://www.scopus.com/inward/record.url?scp=78751513758&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78751513758&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-10-1977
DO - 10.1158/0008-5472.CAN-10-1977
M3 - Article
C2 - 21084274
AN - SCOPUS:78751513758
SN - 0008-5472
VL - 71
SP - 506
EP - 515
JO - Cancer Research
JF - Cancer Research
IS - 2
ER -