@inproceedings{c3524d2ca4dd41d39fc6c86e314a04e5,
title = "The absolute radiometric calibration of terra imaging sensors: MODIS, MISR, and ASTER",
abstract = "The Terra spacecraft contains five Earth-observation instruments, three of which are multispectral imaging sensors that complement each other in spectral and spatial coverage. The Moderate Resolution Imaging Spectroradiometer (MODIS) has 36 channels ranging from 0.4-14.4 μm, with spatial resolutions of 250, 500, and 1000 m. The Multi-angle Imaging SpectroRadiometer (MISR) uses individual imaging sensors to view the earth at nine discreet angles. Each radiometer has four channels in the visible and near infrared (VNIR), and the nadir-viewing camera has a spatial resolution of 275 m. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was designed with fourteen bands ranging from 0.5-11.6 μm. It is the high-resolution sensor on Terra, with a spatial resolution of 15 m in the VNIR, and 30 m in the shortwave infrared (SWIR). This work describes the vicarious techniques used to perform the absolute radiometric calibration of MODIS, MISR, and ASTER in the solar-reflective region (0.4-2.5 μm). It includes the reflectance-based approach, which uses ground-based personnel to make in situ measurements during the time of overpass. It also includes more recent results that were obtained using the University of Arizona's automated Radiometric Calibration Test Site (RadCaTS) at Railroad Valley, Nevada. In addition to the absolute radiometric calibration of Terra sensors, RadCaTS is used to perform the cross comparison of MODIS, MISR, and ASTER with Landsat 7 ETM+ and Landsat 8 OLI.",
keywords = "ASTER, ETM+, MISR, MODIS, OLI, RadCaTS, Radiometric calibration, Terra",
author = "Jeffrey Czapla-Myers and Kurtis Thome and Nikolaus Anderson and Stuart Biggar",
note = "Publisher Copyright: {\textcopyright} 2014 SPIE.; Earth Observing Systems XIX ; Conference date: 18-08-2014 Through 20-08-2014",
year = "2014",
doi = "10.1117/12.2062529",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Xiaoxiong Xiong and Xingfa Gu and Butler, {James J.}",
booktitle = "Earth Observing Systems XIX",
}