TY - JOUR
T1 - Testing viable f (R) models with the angular-diameter distance to compact quasar cores
AU - Sultana, Joseph
AU - Melia, Fulvio
AU - Kazanas, Demosthenes
N1 - Publisher Copyright:
© 2019 American Physical Society.
PY - 2019/5/15
Y1 - 2019/5/15
N2 - We consider here some popular f(R) models generally viewed as possible alternatives to the existence of dark energy in General Relativity. For each of these, we compute the redshift zmax at which the angular diameter distance dA(z) is expected to reach its maximum value. This turning point in dA(z) was recently measured in a model-independent way using compact quasar cores and was found to occur at zmax=1.70±0.20. We compare the predictions of zmax for the f(R) models with this observed value to test their viability at a deeper level than has been attempted thus far, thereby quantifying an important observational difference between such modified gravity scenarios and standard Lambda Cold Dark Matter (ΛCDM) cosmology. Our results show that, while the most popular f(R) models today are consistent with this measurement to within 1σ, the turning point zmax will allow us to prioritize these alternative gravity theories as the measurement precision continues to improve, particularly with regard to how well they mitigate the tension between the predictions of ΛCDM and the observations. For example, while the Hu-Sawicki version of f(R) increases this tension, the Starobinky model reduces it.
AB - We consider here some popular f(R) models generally viewed as possible alternatives to the existence of dark energy in General Relativity. For each of these, we compute the redshift zmax at which the angular diameter distance dA(z) is expected to reach its maximum value. This turning point in dA(z) was recently measured in a model-independent way using compact quasar cores and was found to occur at zmax=1.70±0.20. We compare the predictions of zmax for the f(R) models with this observed value to test their viability at a deeper level than has been attempted thus far, thereby quantifying an important observational difference between such modified gravity scenarios and standard Lambda Cold Dark Matter (ΛCDM) cosmology. Our results show that, while the most popular f(R) models today are consistent with this measurement to within 1σ, the turning point zmax will allow us to prioritize these alternative gravity theories as the measurement precision continues to improve, particularly with regard to how well they mitigate the tension between the predictions of ΛCDM and the observations. For example, while the Hu-Sawicki version of f(R) increases this tension, the Starobinky model reduces it.
UR - http://www.scopus.com/inward/record.url?scp=85066433885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066433885&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.99.103505
DO - 10.1103/PhysRevD.99.103505
M3 - Article
AN - SCOPUS:85066433885
SN - 2470-0010
VL - 99
JO - Physical Review D
JF - Physical Review D
IS - 10
M1 - 103505
ER -