TY - JOUR
T1 - Testing dark energy paradigms with weak gravitational lensing
AU - Vanderveld, R. Ali
AU - Mortonson, Michael J.
AU - Hu, Wayne
AU - Eifler, Tim
PY - 2012/5/16
Y1 - 2012/5/16
N2 - Any theory invoked to explain cosmic acceleration predicts consistency relations between the expansion history, structure growth, and all related observables. Currently there exist high-quality measurements of the expansion history from type Ia supernovae, the cosmic microwave background temperature and polarization spectra, and baryon acoustic oscillations. We can use constraints from these data sets to predict what future probes of structure growth should observe. We apply this method to predict what range of cosmic shear power spectra would be expected if we lived in a ΛCDM universe, with or without spatial curvature, and what results would be inconsistent and therefore falsify the model. Though predictions are relaxed if one allows for an arbitrary quintessence equation of state -1≤w(z)≤1, we find that any observation that rules out ΛCDM due to excess lensing will also rule out all quintessence models, with or without early dark energy. We further explore how uncertainties in the nonlinear matter power spectrum, e.g. from approximate fitting formulas such as Halofit, warm dark matter, or baryons, impact these limits.
AB - Any theory invoked to explain cosmic acceleration predicts consistency relations between the expansion history, structure growth, and all related observables. Currently there exist high-quality measurements of the expansion history from type Ia supernovae, the cosmic microwave background temperature and polarization spectra, and baryon acoustic oscillations. We can use constraints from these data sets to predict what future probes of structure growth should observe. We apply this method to predict what range of cosmic shear power spectra would be expected if we lived in a ΛCDM universe, with or without spatial curvature, and what results would be inconsistent and therefore falsify the model. Though predictions are relaxed if one allows for an arbitrary quintessence equation of state -1≤w(z)≤1, we find that any observation that rules out ΛCDM due to excess lensing will also rule out all quintessence models, with or without early dark energy. We further explore how uncertainties in the nonlinear matter power spectrum, e.g. from approximate fitting formulas such as Halofit, warm dark matter, or baryons, impact these limits.
UR - http://www.scopus.com/inward/record.url?scp=84861669922&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861669922&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.85.103518
DO - 10.1103/PhysRevD.85.103518
M3 - Article
AN - SCOPUS:84861669922
SN - 1550-7998
VL - 85
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 10
M1 - 103518
ER -