TY - JOUR
T1 - Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure
AU - Rezler, Evonne M.
AU - Seenisamy, Jeyaprakashnarayanan
AU - Bashyam, Sridevi
AU - Kim, Mu Yong
AU - White, Elizabeth
AU - Wilson, W. David
AU - Hurley, Laurence H.
PY - 2005/7/6
Y1 - 2005/7/6
N2 - The human telomeric sequence d[T2AG3]4 has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na+), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K+). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K+ or Na +. In contrast, in the presence of K+, Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.
AB - The human telomeric sequence d[T2AG3]4 has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na+), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K+). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K+ or Na +. In contrast, in the presence of K+, Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.
UR - http://www.scopus.com/inward/record.url?scp=21644460419&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=21644460419&partnerID=8YFLogxK
U2 - 10.1021/ja0505088
DO - 10.1021/ja0505088
M3 - Article
C2 - 15984871
AN - SCOPUS:21644460419
SN - 0002-7863
VL - 127
SP - 9439
EP - 9447
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 26
ER -