Techniques for Measuring Comparable Lab and Field MTFs

Jordan Rubis, Patrick Leslie, Jeffrey Meier, Ellie Spitzer, Eddie Jacobs, Ron Driggers

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Modulation Transfer Functions (MTFs) describe how a sensor system transfers spatial frequencies of a scene through an imaging system. For Infrared systems, lab measurements are performed in a laboratory setting with a collimated source and a tilted edge target. This method is the standard way to measure a sensor’s performance metric. When these sensors are used for practical applications in the field, factors such as focus, atmospheric turbulence, and path radiance limit the performance of the system. These environmentally induced blurs need to be considered when designing sensor systems to ensure the required performance is met. The effects of these factors on the sensor’s performance can be quantified by measuring an MTF while in the field. By matching laboratory and static field MTFs, the effects of other blurs can be isolated, such as platform dynamics, vibration, and atmospheric turbulence, which will affect the performance of the system. To obtain a field MTF that matches one measured in the laboratory, the variable field conditions need to be well controlled. The effects of MTF target nonuniformity, tilt angle, illumination spectra, integration time, dynamic range, and number of pixels on target were explored as possible environmental factors affecting the quality of field MTF measurements.

Original languageEnglish (US)
Title of host publicationInfrared Imaging Systems
Subtitle of host publicationDesign, Analysis, Modeling, and Testing XXXV
EditorsDavid P. Haefner, Gerald C. Holst
PublisherSPIE
ISBN (Electronic)9781510674080
DOIs
StatePublished - 2024
EventInfrared Imaging Systems: Design, Analysis, Modeling, and Testing XXXV 2024 - National Harbor, United States
Duration: Apr 23 2024Apr 25 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13045
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceInfrared Imaging Systems: Design, Analysis, Modeling, and Testing XXXV 2024
Country/TerritoryUnited States
CityNational Harbor
Period4/23/244/25/24

Keywords

  • Infrared
  • MTF
  • Performance Modeling
  • Sensor Performance
  • Sensors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Techniques for Measuring Comparable Lab and Field MTFs'. Together they form a unique fingerprint.

Cite this