Systematic construction of the equations of motion for multibody systems containing closed kinematic loops

P. E. Nikravesh, Gwanghun Gim

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

This papers presents a systematic method for deriving the minimum number of equations of motion for multibody system containing closed kinematic loops. A set of joint or natural coordinates is used to describe the configuration of the system. The constraint equations associated with the closed kinematic loops are found systematically in terms of the joint coordinates. These constraints and their corresponding elements are constructed from known block matrices representing different kinematic joints. The Jacobian matrix associated with these constraints is further used to find a velocity transformation matrix. The equations of motions are initially written in terms of the dependent joint coordinates using the Lagrange multiplier technique. Then the velocity transformation matrix is used to derive a minimum number of equations of motion in terms of a set of independent joint coordinates. An illustrative example and numerical results are presented, and the advantages and disadvantages of the method are discussed.

Original languageEnglish (US)
Pages (from-to)143-149
Number of pages7
JournalJournal of Mechanical Design, Transactions of the ASME
Volume115
Issue number1
DOIs
StatePublished - Mar 1993
Externally publishedYes

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Systematic construction of the equations of motion for multibody systems containing closed kinematic loops'. Together they form a unique fingerprint.

Cite this