TY - JOUR
T1 - Synthesis of 1-acyl-2-acetyl-sn-glycero-s-phosphocholine by an enriched preparation of the human lung mast cell
AU - Triggiani, Massimo
AU - Hubbard, Walter C.
AU - Chilton, Floyd H.
PY - 1990/6/15
Y1 - 1990/6/15
N2 - Our study has examined the synthesis of platelet activating factor (PAF; 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and of structurally related molecules by an enriched preparation (>70%) of the human lung mast cell (HLMC) in response to immunologic stimulation. Upon activation with anti-IgE, HLMC incorporated exogenously provided acetate into a phospholipid that migrated with authentic PAF on TLC. The formation of this product in HLMC occurred concomitantly with histamine and leukotriene C4 release. Further analysis of this phospholipidrevealed that 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (GPC) and not 1-alkyl-2-acetyl-GPC was the major 1-radyl-2-acetyl-GPC subclass formed during cell activation. The presence of 1-alkyl-2-acetyl-GPC was confirmed by negative ion chemical ionization mass spectrometry. In addition to this product, anti-IgE-stimulated HLMC synthesized relatively small quantities of another 2-acetylated phospholipid migrating on TLC between phosphatidylcholine and phosphatidylinositol. The chromatographic characteristics of this product suggested that it is a subclass of 1-radyl-2-acetyl-sn-glycero-3-phosphoethanolamine. The catabolism of both 1-acyl-2-acetyl-GPC and 1-alkyl-2-acetyl-GPC was next examined to determine if the predominant formation of 1-acyl-2-acetyl-GPC over 1-alkyl-2-acetyl-GPC was due to differences in their metabolism. Both 1-acyl-2-acetyl-GPC and 1-alkyl-2-acetyl-GPC were metabolized by the HLMC at similar rates. There was, however, a qualitative difference in the metabolic products derived from the two phospholipids. 1-Alkyl-2-acetyl-GPC was rapidly inactivated by removal of the acetate moiety at the sn-2 position followed by rapid reacylation with arachidonate. By contrast, 1-acyl-2-acetyl-GPC was catabolized mainly by removal of the fatty acyl moiety at the sn-1 position. These data demonstrate the natural occurrence of PAF and at least two structurally similar molecules in anti-IgE stimulated HLMC. Furthermore, an analog containing an ester linkage at the sn-1 position, 1-acyl-2-acetyl-GPC, appears to be the major acetylated product synthesized under these conditions.
AB - Our study has examined the synthesis of platelet activating factor (PAF; 1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and of structurally related molecules by an enriched preparation (>70%) of the human lung mast cell (HLMC) in response to immunologic stimulation. Upon activation with anti-IgE, HLMC incorporated exogenously provided acetate into a phospholipid that migrated with authentic PAF on TLC. The formation of this product in HLMC occurred concomitantly with histamine and leukotriene C4 release. Further analysis of this phospholipidrevealed that 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (GPC) and not 1-alkyl-2-acetyl-GPC was the major 1-radyl-2-acetyl-GPC subclass formed during cell activation. The presence of 1-alkyl-2-acetyl-GPC was confirmed by negative ion chemical ionization mass spectrometry. In addition to this product, anti-IgE-stimulated HLMC synthesized relatively small quantities of another 2-acetylated phospholipid migrating on TLC between phosphatidylcholine and phosphatidylinositol. The chromatographic characteristics of this product suggested that it is a subclass of 1-radyl-2-acetyl-sn-glycero-3-phosphoethanolamine. The catabolism of both 1-acyl-2-acetyl-GPC and 1-alkyl-2-acetyl-GPC was next examined to determine if the predominant formation of 1-acyl-2-acetyl-GPC over 1-alkyl-2-acetyl-GPC was due to differences in their metabolism. Both 1-acyl-2-acetyl-GPC and 1-alkyl-2-acetyl-GPC were metabolized by the HLMC at similar rates. There was, however, a qualitative difference in the metabolic products derived from the two phospholipids. 1-Alkyl-2-acetyl-GPC was rapidly inactivated by removal of the acetate moiety at the sn-2 position followed by rapid reacylation with arachidonate. By contrast, 1-acyl-2-acetyl-GPC was catabolized mainly by removal of the fatty acyl moiety at the sn-1 position. These data demonstrate the natural occurrence of PAF and at least two structurally similar molecules in anti-IgE stimulated HLMC. Furthermore, an analog containing an ester linkage at the sn-1 position, 1-acyl-2-acetyl-GPC, appears to be the major acetylated product synthesized under these conditions.
UR - http://www.scopus.com/inward/record.url?scp=0025376282&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025376282&partnerID=8YFLogxK
M3 - Article
C2 - 2141044
AN - SCOPUS:0025376282
SN - 0022-1767
VL - 144
SP - 4773
EP - 4780
JO - Journal of Immunology
JF - Journal of Immunology
IS - 12
ER -