Abstract
Previous work has demonstrated that selective cyclooxygenase-2 (COX-2) inhibitors can act synergistically with radiotherapy to improve tumor debulking and control in preclinical models. The underlying mechanism of this remarkable activity has not yet been determined. Here, we report that radiation can elevate intratumoral levels of COX-2 protein and its products, particularly prostaglandin E2 (PGE2). Furthermore, inhibition of COX-2 activity or neutralization of PGE2 activity enhances radiotherapy even in tumors where COX-2 expression is restricted to the tumor neovasculature. Direct assessment of vascular function by direct contrast enhancement-magnetic resonance imaging showed that the combination of radiation and celecoxib lead to enhanced vascular permeability. These observations suggest that an important mechanism of celecoxib-induced radiosensitization involves inhibition of COX-2-derived PGE2, thus removing a survival factor for the tumor and its vasculature.
Original language | English (US) |
---|---|
Pages (from-to) | 279-285 |
Number of pages | 7 |
Journal | Cancer Research |
Volume | 64 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2004 |
Externally published | Yes |
ASJC Scopus subject areas
- Oncology
- Cancer Research