Abstract
In vivo, in vitro and computational studies were used to investigate the impact of the synaptic background activity observed in neocortical neurons in vivo. We simulated background activity in vitro using two stochastic Ornstein-Uhlenbeck processes describing glutamatergic and GABAergic synaptic conductances, which were injected into a cell in real time using the dynamic clamp technique. With parameters chosen to mimic in vivo conditions, layer 5 rat prefrontal cortex cells recorded in vitro were depolarized by about 15 mV, their membrane fluctuated with a S.D. of about 4 mV, their input resistances decreased five-fold, their spontaneous firing had a high coefficient of variation and an average firing rate of about 5-10 Hz. Brief changes in the variance of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) synaptic conductance fluctuations induced time-locked spiking without significantly changing the average membrane potential of the cell. These transients mimicked increases in the correlation of excitatory inputs. Background activity was highly effective in modulating the firing-rate/current curve of the cell: the variance of the simulated γ-aminobutyric acid (GABA) and AMPA conductances individually set the input/output gain, the mean excitatory and inhibitory conductances set the working point, and the mean inhibitory conductance controlled the input resistance. An average ratio of inhibitory to excitatory mean conductances close to 4 was optimal in generating membrane potential fluctuations with high coefficients of variation. We conclude that background synaptic activity can dynamically modulate the input/output properties of individual neocortical neurons in vivo.
Original language | English (US) |
---|---|
Pages (from-to) | 811-829 |
Number of pages | 19 |
Journal | Neuroscience |
Volume | 122 |
Issue number | 3 |
DOIs | |
State | Published - 2003 |
Externally published | Yes |
Keywords
- Computational model
- Dynamic-clamp
- Gain
- Synapse
- Variance detection
ASJC Scopus subject areas
- General Neuroscience