Sustainable bioleaching of lithium-ion batteries for critical materials recovery

Majid Alipanah, David Reed, Vicki Thompson, Yoshiko Fujita, Hongyue Jin

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The demand for lithium-ion batteries (LIBs) has increased substantially over the last few decades due to their longer lifetime, greater resistance to self-discharge, and higher output voltage compared to other battery types. With the global trend of electrifying vehicle fleets, the number of LIBs reaching their end-of-life (EOL) is expected to grow substantially in the next decade. These EOL LIBs represent a significant secondary source of materials (e.g., Li, Co, Ni, Mn) that can be recovered and reused in LIBs or other products. In this study, we developed a bioleaching process that could recover critical materials from EOL LIBs in an economical and environmentally sustainable manner under industrially relevant conditions. Black mass, i.e., cathode-containing powder, prepared from EOL LIBs was leached using a biolixiviant produced from corn stover by Gluconobacter oxydans bacteria. Iron(II) was used as a reducing agent to promote metal dissolution. Techno-economic analysis (TEA) estimated a potential average profit margin of 21% for processing 10,000 t of black mass per year, which represents approximately 30% of the available black mass in the US in 2020. Life cycle assessment (LCA) demonstrated that bioleaching of spent LIBs could be more environmentally sustainable than alternative hydrometallurgical recovery methods such as hydrochloric acid leaching (16–19 kg vs. 43–91 kg CO2 equivalent global warming potential per kg of recovered cobalt). The TEA results are highly dependent on the cost of black mass production, which varies by EOL LIB collection and transportation costs. Emerging technologies for deactivating used LIBs for fire safety at collection centers will allow the transport of EOL LIBs as non-hazardous materials, lower the cost of preparing black mass and thereby increase economic prospects for EOL LIBs recycling using this approach.

Original languageEnglish (US)
Article number135274
JournalJournal of Cleaner Production
Volume382
DOIs
StatePublished - Jan 1 2023

Keywords

  • Biohydrometallurgy
  • Gluconobacter oxydans
  • Lithium-ion batteries
  • Organic acids
  • Recycling

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Building and Construction
  • General Environmental Science
  • Strategy and Management
  • Industrial and Manufacturing Engineering

Cite this