Abstract
Nonparamtric bootstrapping methods may be useful for assessing confidence in a supertree inference. We examined the performance of two supertree bootstrapping methods on four published data sets that each include sequence data from more than 100 genes. In "input tree bootstrapping," input gene trees are sampled with replacement and then combined in replicate supertree analyses; in "stratified bootstrapping," trees from each gene's separate (conventional) bootstrap tree set are sampled randomly with replacement and then combined. Generally, support values from both supertree bootstrap methods were similar or slightly lower than corresponding bootstrap values from a total evidence, or supermatrix, analysis. Yet, supertree bootstrap support also exceeded supermatrix bootstrap support for a number of clades. There was little overall difference in support scores between the input tree and stratified bootstrapping methods. Results from supertree bootstrapping methods, when compared to results from corresponding supermatrix bootstrapping, may provide insights into patterns of variation among genes in genome-scale data sets.
Original language | English (US) |
---|---|
Pages (from-to) | 426-440 |
Number of pages | 15 |
Journal | Systematic biology |
Volume | 55 |
Issue number | 3 |
DOIs | |
State | Published - Jun 2006 |
Keywords
- Nonparametric bootstrapping
- Phylogenetics
- Supermatrix
- Supertree
- Supertree bootstrapping
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Genetics