SuperCam, a 64-pixel heterodyne imaging array for the 870 micron atmospheric window

Christopher Groppi, Christopher Walker, Craig Kulesa, Patrick Pütz, Dathon Golish, Paul Gensheimer, Abigail Hedden, Shane Bussmann, Sander Weinreb, Thomas Kuiper, Jacob Kooi, Glenn Jones, Joseph Bardin, Hamdi Mani, Arthur Lichtenberger, Gopal Narayanan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We report on the development of SuperCam, a 64 pixel, superheterodyne camera designed for operation in the astrophysically important 870 μm atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The advent of such a system will provide an order of magnitude increase in mapping speed over what is now available and revolutionize how observational astronomy is performed in this important wavelength regime. Unlike the situation with bolometric detectors, heterodyne receiver systems are coherent, retaining information about both the amplitude and phase of the incident photon stream. From this information a high resolution spectrum of the incident light can be obtained without multiplexing. SuperCam will be constructed by stacking eight, 1×8 rows of fixed tuned, SIS mixers. The IF output of each mixer will be connected to a low-noise, broadband MMIC amplifier integrated into the mixer block. The instantaneous IF bandwidth of each pixel will be ∼2 GHz, with a center frequency of 5 GHz. A spectrum of the central 500 MHz of each IF band will be provided by the array spectrometer. Local oscillator power is provided by a frequency multiplier whose output is divided between the pixels by using a matrix of waveguide power dividers. The mixer array will be cooled to 4K by a closed-cycle refrigeration system. SuperCam will reside at the Cassegrain focus of the 10m Heinrich Hertz telescope (HHT). A prototype single row of the array will be tested on the HHT in 2006, with the first engineering run of the full array in late 2007. The array is designed and constructed so that it may be readily scaled to higher frequencies.

Original languageEnglish (US)
Title of host publicationMillimeter and Submillimeter Detectors and Instrumentation for Astronomy III
DOIs
StatePublished - 2006
EventMillimeter and Submillimeter Detectors and Instrumentation for Astronomy III - Orlando, FL, United States
Duration: May 29 2006May 31 2006

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume6275
ISSN (Print)0277-786X

Other

OtherMillimeter and Submillimeter Detectors and Instrumentation for Astronomy III
Country/TerritoryUnited States
CityOrlando, FL
Period5/29/065/31/06

Keywords

  • Heterodyne imaging arrays
  • Molecular spectroscopy
  • Submillimeter

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'SuperCam, a 64-pixel heterodyne imaging array for the 870 micron atmospheric window'. Together they form a unique fingerprint.

Cite this