Superadditivity in Trade-Off Capacities of Quantum Channels

Elton Yechao Zhu, Quntao Zhuang, Min Hsiu Hsieh, Peter W. Shor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


We investigate the additivity phenomenon in the dynamic capacity of a quantum channel for trading the resources of classical communication, quantum communication, and entanglement. Understanding such an additivity property is important if we want to optimally use a quantum channel for general communication purposes. However, in a lot of cases, the channel one will be using only has an additive single or double resource capacity, and it is largely unknown if this could lead to an superadditive double or triple resource capacity, respectively. For example, if a channel has an additive classical and quantum capacity, can the classical-quantum capacity be superadditive? In this work, we answer such questions affirmatively. We give proof-of-principle requirements for these channels to exist. In most cases, we can provide an explicit construction of these quantum channels. The existence of these superadditive phenomena is surprising in contrast to the result that the additivity of both classical-entanglement and classical-quantum capacity regions imply the additivity of the triple resource capacity region. A full version of this paper is accessible at:

Original languageEnglish (US)
Title of host publication2018 IEEE International Symposium on Information Theory, ISIT 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages5
ISBN (Print)9781538647806
StatePublished - Aug 15 2018
Externally publishedYes
Event2018 IEEE International Symposium on Information Theory, ISIT 2018 - Vail, United States
Duration: Jun 17 2018Jun 22 2018

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095


Conference2018 IEEE International Symposium on Information Theory, ISIT 2018
Country/TerritoryUnited States

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'Superadditivity in Trade-Off Capacities of Quantum Channels'. Together they form a unique fingerprint.

Cite this