Super-smooth optical fabrication controlling high spatial frequency surface irregularity

Javier Del Hoyo, Dae Wook Kim, James H Burge

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Scopus citations


Modern advanced optical systems often require challenging high spatial frequency surface error control during their optical fabrication processes. While the large scale surface figure error can be controlled by directed material removal processes such as small tool figuring, surface finish (<<1mm scales) is controlled with the polishing process. For large aspheric optical systems, surface shape irregularities of a few millimeters in scale may cause serious performance degradation in terms of scattered light background noise and high contrast imaging capability. The conventional surface micro roughness concept in Root Mean Square (RMS) over a very high spatial frequency range (e.g. RMS of 0.5 by 0.5 mm local surface map with 500 by 500 pixels) is not sufficient to describe or specify these surface characteristics. For various experimental polishing conditions, we investigate the process control for high frequency surface errors with periods up to ~2-3mm. The Power Spectral Density of the finished optical surfaces has been measured and analyzed to relate various computer controlled optical surfacing parameters (e.g. polishing interface materials) with the high spatial frequency errors on the surface. The experiment-based optimal polishing conditions and processes producing a super smooth optical surface while controlling surface irregularity at the millimeter range are presented.

Original languageEnglish (US)
Title of host publicationOptical Manufacturing and Testing X
StatePublished - 2013
EventOptical Manufacturing and Testing X - San Diego, CA, United States
Duration: Aug 26 2013Aug 27 2013

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherOptical Manufacturing and Testing X
Country/TerritoryUnited States
CitySan Diego, CA

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Super-smooth optical fabrication controlling high spatial frequency surface irregularity'. Together they form a unique fingerprint.

Cite this