Subaru Coronagraphic eXtreme Adaptive Optics: On-sky performance of the asymmetric pupil Fourier wavefront sensor

Frantz Martinache, Nemanja Jovanovic, Olivier Guyon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument relies on a technique known as the asymmetric pupil Fourier wavefront sensor (APF-WFS) to compensate for the non-common path error that affects the performance of high contrast imaging instruments. The APF-WFS is a powerful tool that senses the wavefront at the level of the science detector, and leads to unbiased wavefront estimates. This paper presents the latest status, linearity properties and reports on the on-sky performance of this sensor, as it is implemented on SCExAO, used to control low-order Zernike modes in a close-loop system.

Original languageEnglish (US)
Title of host publicationAdaptive Optics Systems V
EditorsEnrico Marchetti, Jean-Pierre Veran, Laird M. Close
PublisherSPIE
ISBN (Electronic)9781510601970
DOIs
StatePublished - 2016
EventAdaptive Optics Systems V - Edinburgh, United Kingdom
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9909
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherAdaptive Optics Systems V
Country/TerritoryUnited Kingdom
CityEdinburgh
Period6/26/167/1/16

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Subaru Coronagraphic eXtreme Adaptive Optics: On-sky performance of the asymmetric pupil Fourier wavefront sensor'. Together they form a unique fingerprint.

Cite this