Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy

Srinivasan Ramachandran, Fernando Teran Arce, Nirav R. Patel, Arjan P. Quist, Daniel A. Cohen, Ratnesh Lal

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors.

Original languageEnglish (US)
Article number4424
JournalScientific reports
StatePublished - Mar 21 2014
Externally publishedYes

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Structure and permeability of ion-channels by integrated AFM and waveguide TIRF microscopy'. Together they form a unique fingerprint.

Cite this