Structural health assessment after an impact

Rene Martinez-Flores, Achintya Haldar, Hasan Katkhuda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations


An innovative technique to assess structural health just after subjected to impulsive loadings (blasts, explosions, etc.) underdevelopment at the University of Arizona was experimentally verified and is presented in this paper. The authors called it the Generalized Iterative Least Square Extended Kalman Filter with Unknown Input (GILS-EKF-UI) method. The system is represented by finite elements and a Kalman filter-based system identification (SI) technique is used to identify the system. Some of the major characteristics of the method are that it does not require information on input excitation and can identify a system with limited noise-contaminated response information measured at few node points. To implement the Kalman-filter based algorithm, the information on the input excitation and the initial state vector must be available. The authors proposed a two-stage approach. In the first stage, based on the limited measured response information available at the locations of the sensors, a substructure is identified. After the completion of the first stage, the input excitation information that caused the responses and the stiffness of all the elements in the substructure can be evaluated. Then, in stage 2, the Kalman-filter based algorithm is used to identify the whole structure. The experimental verification of the method is emphasized in this paper.

Original languageEnglish (US)
Title of host publicationProceedings of 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Safety Engineering and Risk Analysis
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Print)0791837904, 9780791837900
StatePublished - 2006
Event2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006 - Chicago, IL, United States
Duration: Nov 5 2006Nov 10 2006

Publication series

NameAmerican Society of Mechanical Engineers, Safety Engineering and Risk Analysis Division, SERA
ISSN (Print)1071-6947


Other2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006
Country/TerritoryUnited States
CityChicago, IL

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality


Dive into the research topics of 'Structural health assessment after an impact'. Together they form a unique fingerprint.

Cite this