TY - JOUR
T1 - Strings at finite temperature
T2 - Wilson lines, free energies, and the thermal landscape
AU - Dienes, Keith R.
AU - Lennek, Michael
AU - Sharma, Menika
PY - 2012/9/17
Y1 - 2012/9/17
N2 - According to the standard prescriptions, zero-temperature string theories can be extended to finite temperature by compactifying their time directions on a so-called "thermal circle" and implementing certain orbifold twists. However, the existence of a topologically nontrivial thermal circle leaves open the possibility that a gauge flux can pierce this circle-i.e., that a nontrivial Wilson line (or equivalently a nonzero chemical potential) might be involved in the finite-temperature extension. In this paper, we concentrate on the zero-temperature heterotic and TypeI strings in ten dimensions, and survey the possible Wilson lines which might be introduced in their finite-temperature extensions. We find a rich structure of possible thermal string theories, some of which even have nontraditional Hagedorn temperatures, and we demonstrate that these new thermal string theories can be interpreted as extrema of a continuous thermal free-energy "landscape." Our analysis also uncovers a unique finite-temperature extension of the heterotic SO(32) and E 8× E 8 strings which involves a nontrivial Wilson line, but which-like the traditional finite-temperature extension without Wilson lines-is metastable in this thermal landscape.
AB - According to the standard prescriptions, zero-temperature string theories can be extended to finite temperature by compactifying their time directions on a so-called "thermal circle" and implementing certain orbifold twists. However, the existence of a topologically nontrivial thermal circle leaves open the possibility that a gauge flux can pierce this circle-i.e., that a nontrivial Wilson line (or equivalently a nonzero chemical potential) might be involved in the finite-temperature extension. In this paper, we concentrate on the zero-temperature heterotic and TypeI strings in ten dimensions, and survey the possible Wilson lines which might be introduced in their finite-temperature extensions. We find a rich structure of possible thermal string theories, some of which even have nontraditional Hagedorn temperatures, and we demonstrate that these new thermal string theories can be interpreted as extrema of a continuous thermal free-energy "landscape." Our analysis also uncovers a unique finite-temperature extension of the heterotic SO(32) and E 8× E 8 strings which involves a nontrivial Wilson line, but which-like the traditional finite-temperature extension without Wilson lines-is metastable in this thermal landscape.
UR - http://www.scopus.com/inward/record.url?scp=84866681446&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866681446&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.86.066007
DO - 10.1103/PhysRevD.86.066007
M3 - Article
AN - SCOPUS:84866681446
SN - 1550-7998
VL - 86
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 6
M1 - 066007
ER -