Abstract
With the advent of multi-core processors, network-on-chip design has been crucial in addressing network performances, such as bandwidth, power consumption, and communication delays when dealing with on-chip communication between the increasing number of processor cores. As the numbers of cores increase, network design becomes inherently more complex. Therefore, there is a critical need in soliciting computer aid in determining network configurations that afford optimal performance given multi-objectives, such as resource and design constraints. We have devised a stochastic multi-objective Pareto-optimization framework that fully automatically explores the space of possible network configurations to determine optimal network latencies, power consumption, and the corresponding link allocations, i.e., the actual network-on-chip design, ab initio with only the number of routers given. For a given number of routers, average network latency and power consumption as example performance objectives can be displayed in form of Pareto-optimal fronts, thus not only offering a powerful automatic network-on-chip design tool, but also affording trade-off studies for the chip designers.
Original language | English (US) |
---|---|
Article number | 101686 |
Journal | Journal of Systems Architecture |
Volume | 103 |
DOIs | |
State | Published - Feb 2020 |
Externally published | Yes |
Keywords
- Automated ab initio network-on-chip design
- BookSim2.0 and gem5
- Multi-objective stochastic Pareto-optimization
- Network latency
- Power consumption
ASJC Scopus subject areas
- Software
- Hardware and Architecture