Abstract
Biomedical implants often exhibit poor clinical performance due to the formation of a periimplant avascular fibrous capsule. Surface modification of synthetic materials has been evaluated to accelerate the formation of functional microcirculation in association with implants. The current study used a flow-mediated protein deposition system to modify expanded polytetrafluoroethylene (ePTFE) with a laminin-5-rich conditioned growth medium and with medium from which laminin-5 had been selectively removed. An in vitro model of endothelial cell adherence determined that laminin-5 modification resulted in significantly increased adhesion of human micro vessel endothelial cells to ePTFE. In vivo studies evaluating the periimplant vascular response to laminin-5-treated samples indicated that absorption of laminin-5-rich conditioned medium supported accelerated neovascularization of ePTFE implants. A flow system designed to treat porous implant materials facilitates laminin-5 modification of commercially available ePTFE, resulting in increased endothelial cell adhesion in vitro and increased vascularization in vivo.
Original language | English (US) |
---|---|
Pages (from-to) | 1379-1391 |
Number of pages | 13 |
Journal | Tissue Engineering |
Volume | 11 |
Issue number | 9-10 |
DOIs | |
State | Published - Sep 2005 |
ASJC Scopus subject areas
- Biotechnology
- Biophysics
- Cell Biology