Stacked phase-space density of galaxies around massive clusters: Comparison of dynamical and lensing masses

Masato Shirasaki, Eiichi Egami, Nobuhiro Okabe, Satoshi Miyazaki

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We present a measurement of average histograms of line-of-sight velocities over pairs of galaxies and galaxy clusters. Since the histogram can be measured at different galaxy-cluster separations, this observable is commonly referred to as the stacked phase-space density. We formulate the stacked phase-space density based on a halo-model approach so that the model can be applied to real samples of galaxies and clusters. We examine our model by using an actual sample of massive clusters with known weak-lensing masses and spectroscopic observations of galaxies around the clusters. A likelihood analysis with our model enables us to infer the spherical-symmetric velocity dispersion of observed galaxies in massive clusters. We find the velocity dispersion of galaxies surrounding clusters with their lensing masses of 1.1 × 1015, h-1,M⊙ to be 1180+83-70, km s-1 at the 68 per cent confidence level. Our constraint confirms that the relation between the galaxy velocity dispersion and the host cluster mass in our sample is consistent with the prediction in dark-matter-only N-body simulations under General Relativity. Assuming that the Poisson equation in clusters can be altered by an effective gravitational constant of Geff, our measurement of the velocity dispersion can place a tight constraint of 0.88 < Geff/GN < 1.29, (68 per cent) at length-scales of a few Mpc about 2.5 Giga years ago, where GN is the Newton's constant.

Original languageEnglish (US)
Pages (from-to)3385-3405
Number of pages21
JournalMonthly Notices of the Royal Astronomical Society
Volume506
Issue number3
DOIs
StatePublished - Sep 1 2021

Keywords

  • galaxies: clusters: general
  • galaxies: kinematics and dynamics
  • large-scale structure of Universe
  • methods: observational

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Stacked phase-space density of galaxies around massive clusters: Comparison of dynamical and lensing masses'. Together they form a unique fingerprint.

Cite this