TY - GEN
T1 - Squashed entanglement and the two-way assisted capacities of a quantum channel
AU - Takeoka, Masahiro
AU - Guha, Saikat
AU - Wilde, Mark M.
PY - 2014
Y1 - 2014
N2 - We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Winter leads to the conclusion that the squashed entanglement of a quantum channel is an additive function of a tensor product of any two quantum channels. More importantly, this new subadditivity inequality, along with prior results of Christandl, Winter, et al., establishes the squashed entanglement of a quantum channel as an upper bound on the quantum communication capacity of any channel assisted by unlimited forward and backward classical communication. A similar proof establishes this quantity as an upper bound on the private capacity of a quantum channel assisted by unlimited forward and backward public classical communication. This latter result is relevant as a limitation on rates achievable in quantum key distribution. As an important application, we determine that these capacities can never exceed log((1 + η)=(1 - η)) for a pure-loss bosonic channel for which a fraction η of the input photons make it to the output on average. The best known lower bound on these capacities is equal to log(1=(1 - η)). Thus, in the high-loss regime for which η ≪ 1, this new upper bound demonstrates that the protocols corresponding to the above lower bound are nearly optimal.
AB - We define the squashed entanglement of a quantum channel as the maximum squashed entanglement that can be registered by a sender and receiver at the input and output of a quantum channel, respectively. A new subadditivity inequality for the original squashed entanglement measure of Christandl and Winter leads to the conclusion that the squashed entanglement of a quantum channel is an additive function of a tensor product of any two quantum channels. More importantly, this new subadditivity inequality, along with prior results of Christandl, Winter, et al., establishes the squashed entanglement of a quantum channel as an upper bound on the quantum communication capacity of any channel assisted by unlimited forward and backward classical communication. A similar proof establishes this quantity as an upper bound on the private capacity of a quantum channel assisted by unlimited forward and backward public classical communication. This latter result is relevant as a limitation on rates achievable in quantum key distribution. As an important application, we determine that these capacities can never exceed log((1 + η)=(1 - η)) for a pure-loss bosonic channel for which a fraction η of the input photons make it to the output on average. The best known lower bound on these capacities is equal to log(1=(1 - η)). Thus, in the high-loss regime for which η ≪ 1, this new upper bound demonstrates that the protocols corresponding to the above lower bound are nearly optimal.
UR - http://www.scopus.com/inward/record.url?scp=84906539549&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84906539549&partnerID=8YFLogxK
U2 - 10.1109/ISIT.2014.6874848
DO - 10.1109/ISIT.2014.6874848
M3 - Conference contribution
AN - SCOPUS:84906539549
SN - 9781479951864
T3 - IEEE International Symposium on Information Theory - Proceedings
SP - 326
EP - 330
BT - 2014 IEEE International Symposium on Information Theory, ISIT 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 IEEE International Symposium on Information Theory, ISIT 2014
Y2 - 29 June 2014 through 4 July 2014
ER -