TY - JOUR
T1 - Spinor atom-molecule conversion via laser-induced three-body recombination
AU - Jing, H.
AU - Deng, Y.
AU - Meystre, P.
PY - 2011/4/1
Y1 - 2011/4/1
N2 - We study the theory of several aspects of the dynamics of coherent atom-molecule conversion in spin-one Bose-Einstein condensates. Specifically, we discuss how, for a suitable dark-state condition, the interplay of spin-exchange collisions and photo association leads to the stable creation of an atom-molecule pair from three initial spin-zero atoms. This process involves two two-body interactions and can be intuitively viewed as an effective three-body recombination. We investigate the relative roles of photo association and of the initial magnetization in the "resonant" case, where the dark-state condition is perfectly satisfied. We also consider the "nonresonant" case, where that condition is satisfied either only approximately-the so-called adiabatic case-or not at all. In the adiabatic case, we derive an effective nonrigid pendulum model that allows one to conveniently discuss the onset of an antiferromagnetic instability in an "atom-molecule pendulum," as well as large-amplitude pair oscillations and atom-molecule entanglement.
AB - We study the theory of several aspects of the dynamics of coherent atom-molecule conversion in spin-one Bose-Einstein condensates. Specifically, we discuss how, for a suitable dark-state condition, the interplay of spin-exchange collisions and photo association leads to the stable creation of an atom-molecule pair from three initial spin-zero atoms. This process involves two two-body interactions and can be intuitively viewed as an effective three-body recombination. We investigate the relative roles of photo association and of the initial magnetization in the "resonant" case, where the dark-state condition is perfectly satisfied. We also consider the "nonresonant" case, where that condition is satisfied either only approximately-the so-called adiabatic case-or not at all. In the adiabatic case, we derive an effective nonrigid pendulum model that allows one to conveniently discuss the onset of an antiferromagnetic instability in an "atom-molecule pendulum," as well as large-amplitude pair oscillations and atom-molecule entanglement.
UR - https://www.scopus.com/pages/publications/79960669856
UR - https://www.scopus.com/inward/citedby.url?scp=79960669856&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.83.043601
DO - 10.1103/PhysRevA.83.043601
M3 - Article
AN - SCOPUS:79960669856
SN - 1050-2947
VL - 83
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 4
M1 - 043601
ER -