TY - JOUR
T1 - Spin-orbit coupling and intersystem crossing in conjugated polymers
T2 - A configuration interaction description
AU - Beljonne, D.
AU - Shuai, Z.
AU - Pourtois, G.
AU - Bredas, J. L.
PY - 2001/4/19
Y1 - 2001/4/19
N2 - Configuration-interaction calculations are performed to describe the singlet and triplet excited states of oligothiophene and oligo(phenylene ethynylene) conjugated chains. Intersystem crossing from the singlet to the triplet manifold is made possible by spin-orbit coupling, which leads to a mixing of the singlet (Sn) and triplet (Tn) wave functions. The electronic spin-orbit S1-Ti- matrix elements, obtained from first-order perturbation theory, are used to compute the rates of intersystem crossing from the lowest singlet excited state, S1, into low-lying triplet states, Ti-. On the basis of these results, a general mechanism is proposed to describe the intersystem crossing process in conjugated oligomers and polymers. The roles of chain length, heavy-atom derivatization, and ring twists are evaluated.
AB - Configuration-interaction calculations are performed to describe the singlet and triplet excited states of oligothiophene and oligo(phenylene ethynylene) conjugated chains. Intersystem crossing from the singlet to the triplet manifold is made possible by spin-orbit coupling, which leads to a mixing of the singlet (Sn) and triplet (Tn) wave functions. The electronic spin-orbit S1-Ti- matrix elements, obtained from first-order perturbation theory, are used to compute the rates of intersystem crossing from the lowest singlet excited state, S1, into low-lying triplet states, Ti-. On the basis of these results, a general mechanism is proposed to describe the intersystem crossing process in conjugated oligomers and polymers. The roles of chain length, heavy-atom derivatization, and ring twists are evaluated.
UR - http://www.scopus.com/inward/record.url?scp=0035912424&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035912424&partnerID=8YFLogxK
U2 - 10.1021/jp010187w
DO - 10.1021/jp010187w
M3 - Article
AN - SCOPUS:0035912424
SN - 1089-5639
VL - 105
SP - 3899
EP - 3907
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 15
ER -