TY - GEN
T1 - Spherical planetary robot for rugged terrain traversal
AU - Raura, Laksh
AU - Warren, Andrew
AU - Thangavelautham, Jekan
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/6/7
Y1 - 2017/6/7
N2 - Wheeled planetary rovers such as the Mars Exploration Rovers (MERs) and Mars Science Laboratory (MSL) have provided unprecedented, detailed images of the Mars surface. However, these rovers are large and are of high-cost as they need to carry sophisticated instruments and science laboratories. We propose the development of low-cost planetary rovers that are the size and shape of cantaloupes and that can be deployed from a larger rover. The rover named SphereX is 2 kg in mass, is spherical, holonomic and contains a hopping mechanism to jump over rugged terrain. A small low-cost rover complements a larger rover, particularly to traverse rugged terrain or roll down a canyon, cliff or crater to obtain images and science data. While it may be a one-way journey for these small robots, they could be used tactically to obtain high-reward science data. The robot is equipped with a pair of stereo cameras to perform visual navigation and has room for a science payload. In this paper, we analyze the design and development of a laboratory prototype. The results show a promising pathway towards development of a field system.
AB - Wheeled planetary rovers such as the Mars Exploration Rovers (MERs) and Mars Science Laboratory (MSL) have provided unprecedented, detailed images of the Mars surface. However, these rovers are large and are of high-cost as they need to carry sophisticated instruments and science laboratories. We propose the development of low-cost planetary rovers that are the size and shape of cantaloupes and that can be deployed from a larger rover. The rover named SphereX is 2 kg in mass, is spherical, holonomic and contains a hopping mechanism to jump over rugged terrain. A small low-cost rover complements a larger rover, particularly to traverse rugged terrain or roll down a canyon, cliff or crater to obtain images and science data. While it may be a one-way journey for these small robots, they could be used tactically to obtain high-reward science data. The robot is equipped with a pair of stereo cameras to perform visual navigation and has room for a science payload. In this paper, we analyze the design and development of a laboratory prototype. The results show a promising pathway towards development of a field system.
UR - http://www.scopus.com/inward/record.url?scp=85021229199&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85021229199&partnerID=8YFLogxK
U2 - 10.1109/AERO.2017.7943758
DO - 10.1109/AERO.2017.7943758
M3 - Conference contribution
AN - SCOPUS:85021229199
T3 - IEEE Aerospace Conference Proceedings
BT - 2017 IEEE Aerospace Conference
PB - IEEE Computer Society
T2 - 2017 IEEE Aerospace Conference, AERO 2017
Y2 - 4 March 2017 through 11 March 2017
ER -