Spherical hexagonal tellurium nanocrystals: Fabrication and size-dependent structural phase transition at high pressure

Zhengtao Deng, Zhongxing Bao, Li Cao, Dong Chen, Fangqiong Tang, Feifei Wang, Cuixia Liu, Bingsuo Zou, Anthony J. Muscat

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Single-crystalline spherical nearly monodisperse tellurium (Te) nanocrystals (NCs) with average diameters of 20 and 90 nm, respectively, have been fabricated for the first time by a facile solution sonochemistry process. The structural characterizations show that the as-synthesized Te NCs have pure hexagonal structure, as revealed by x-ray diffraction (XRD), selected-area electron diffraction (SAED), energy-dispersive x-ray (EDX) spectroscopy, and high-resolution transmission electron microscopy (HRTEM) methods. The size-dependent structural phase transition of Te NCs up to the high pressure of 20 GPa has been investigated in a diamond anvil cell using resistance measurement at room temperature, and compared with the behavior of bulk Te under identical conditions. The experimental results indicate that 20 nm Te NCs, 90 nm NCs, and bulk Te all undergo two phase transitions up to 20 GPa, their respective transition pressures being about 7.2 and 10.3 GPa, 5.9 and 8.8 GPa, and 4.0 and 6.8 GPa. This indicates that the phase transition pressures are higher for the smaller NCs. In this paper we discuss the size-dependent structural phase transitions, the sluggishness of the phase transition process, and the fluctuating properties of the phase transition products at high pressure. The present work might open an avenue to real-time detection of the dynamics of the phase transition in bulk and nanoscale materials at high pressure, and also could serve as a guide to tailoring the microscopic properties of materials.

Original languageEnglish (US)
Article number045707
JournalNanotechnology
Volume19
Issue number4
DOIs
StatePublished - Jan 30 2008
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Spherical hexagonal tellurium nanocrystals: Fabrication and size-dependent structural phase transition at high pressure'. Together they form a unique fingerprint.

Cite this