Spectroastrometry with Photonic Lanterns

Yoo Jung Kim, Stephanie Sallum, Jonathan Lin, Yinzi Xin, Barnaby Norris, Christopher Betters, Sergio Leon-Saval, Julien Lozi, Sebastien Vievard, Pradip Gatkine, Olivier Guyon, Nemanja Jovanovic, Dimitri Mawet, Michael P. Fitzgerald

Research output: Chapter in Book/Report/Conference proceedingConference contribution

14 Scopus citations

Abstract

New frontiers of astronomical science push the imaging capabilities of modern AO-equipped telescopes. However, precision measurement at the diffraction limit is made challenging by time-varying residual aberrations in AO-corrected wavefronts. Photonic lanterns (PLs) are a novel technology whose spatial filtering and coherence properties may be exploited to enable new capabilities in precision measurement at the diffraction limit. We aim to determine the potential of AO-fed PL fiber spectrometers for spectroastrometry. We define spectroastrometric signals for a 6-port PL and perform numerical simulations to calculate expected signals for a binary point source model, as a function of contrast, separation, and position angle. In addition, we simulate the effects of AO residual wavefront error on spectroastrometric signals. We also present simulated spectroastrometric signals for accreting planets, which are expected to show strong hydrogen emission lines.

Original languageEnglish (US)
Title of host publicationGround-based and Airborne Instrumentation for Astronomy IX
EditorsChristopher J. Evans, Julia J. Bryant, Kentaro Motohara
PublisherSPIE
ISBN (Electronic)9781510653498
DOIs
StatePublished - 2022
Externally publishedYes
EventGround-based and Airborne Instrumentation for Astronomy IX 2022 - Montreal, Canada
Duration: Jul 17 2022Jul 22 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12184
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceGround-based and Airborne Instrumentation for Astronomy IX 2022
Country/TerritoryCanada
CityMontreal
Period7/17/227/22/22

Keywords

  • Photonic Lanterns
  • Protoplanets
  • Spectroastrometry

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Spectroastrometry with Photonic Lanterns'. Together they form a unique fingerprint.

Cite this