TY - GEN
T1 - Spectral band selection and tolerancing for multispectral filter arrays
AU - Sawyer, Travis W.
AU - Williams, Calum
AU - Bohndiek, Sarah E.
N1 - Publisher Copyright:
© OSA 2019. The Author(s).
PY - 2019/9/8
Y1 - 2019/9/8
N2 - When light is incident upon tissue, imaging contrast can be obtained from a range of interactions including absorption, scattering and fluorescence. Clinical optical imaging systems are typically optimized to report on a single contrast source, for example, using a series of filters to extract fluorescence emissions. Hyperspectral imaging has the potential to overcome the need for specialized instrumentation, by sampling spatial and spectral information simultaneously. In particular, multispectral filter arrays (MSFAs) now monolithically integrate spectral filters with CMOS image sensors to provide a robust, compact and cost-effective solution to video rate hyperspectral imaging. However, MSFAs suffer from a significant limitation: the inherent trade-off between spatial and spectral resolution. Therefore, the properties of the MSFA including the number of filters (spectral bands), their wavelength and bandwidth, needs be optimized for tissue imaging. While many approaches exist for optimizing spectral bands, none consider practical challenges such as manufacturing constraints and tolerancing. To overcome this, we have developed a framework for spectral band optimization for MSFAs that considers the constraints of our fabrication process, including establishing tolerances. Our approach shows early promise for fabricating MSFAs with appropriate spectral filters.
AB - When light is incident upon tissue, imaging contrast can be obtained from a range of interactions including absorption, scattering and fluorescence. Clinical optical imaging systems are typically optimized to report on a single contrast source, for example, using a series of filters to extract fluorescence emissions. Hyperspectral imaging has the potential to overcome the need for specialized instrumentation, by sampling spatial and spectral information simultaneously. In particular, multispectral filter arrays (MSFAs) now monolithically integrate spectral filters with CMOS image sensors to provide a robust, compact and cost-effective solution to video rate hyperspectral imaging. However, MSFAs suffer from a significant limitation: the inherent trade-off between spatial and spectral resolution. Therefore, the properties of the MSFA including the number of filters (spectral bands), their wavelength and bandwidth, needs be optimized for tissue imaging. While many approaches exist for optimizing spectral bands, none consider practical challenges such as manufacturing constraints and tolerancing. To overcome this, we have developed a framework for spectral band optimization for MSFAs that considers the constraints of our fabrication process, including establishing tolerances. Our approach shows early promise for fabricating MSFAs with appropriate spectral filters.
UR - http://www.scopus.com/inward/record.url?scp=85087104969&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087104969&partnerID=8YFLogxK
U2 - 10.1364/FIO.2019.JW4A.126
DO - 10.1364/FIO.2019.JW4A.126
M3 - Conference contribution
AN - SCOPUS:85084438363
T3 - Frontiers in Optics - Proceedings Frontiers in Optics + Laser Science APS/DLS
BT - Frontiers in Optics - Proceedings Frontiers in Optics + Laser Science APS/DLS
PB - Optical Society of America (OSA)
T2 - Frontiers in Optics, FIO 2019 - Part of Frontiers in Optics + Laser Science APS/DLS
Y2 - 15 September 2019 through 19 September 2019
ER -