@article{ac9becd0527c4423bd7b30625af088de,
title = "Spectral analysis of craters on (101955) Bennu",
abstract = "Using data acquired by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer) mission, we investigate spectral properties of craters on the near-Earth asteroid (101955) Bennu. We compare Bennu's craters with its global average by means of four spectral parameters: (a) minimum position of the band at 2.7 μm, (b) depth of the hydrated phyllosilicate absorption band at 2.7 μm, (c) normalized spectral slope from 0.55 to 2.0 μm, and (d) reflectance factor at 0.55 μm. We examine 45 craters using spectral data obtained under various observing conditions. For 20 craters, we find a shortward shift of the 2.7-μm band minimum relative to the global 2.7-μm band minimum, which we attribute to the presence of relatively fresh (less space-weathered) material excavated from the sub-surface by crater-forming impacts. For three craters, we find an anti-correlation between spectral slopes and reflectance factor for a series of spectra acquired during a specific scan, where we observe that spectra become redder and darker towards the center of the crater. We attribute this to the presence of fine-particulate regolith. Localized spectral heterogeneities are apparent inside a prominent equatorial crater on Bennu, which is one of the asteroid's oldest geological features. We propose that such local spectral heterogeneities could be used as a tracer of mass movement on Bennu. We show that younger craters are redder, brighter, and have deeper 2.7-μm bands. Comparing global average spectral values of Bennu and crater frequency distributions as a function of the chosen spectral parameters, we find that craters evolve to assume the global average spectral properties of Bennu. A positive correlation identified between the reflectance factor and 2.7-μm band depth suggests that brighter craters tend to be more hydrated. Finally, we put into context, the results from the Small Carry-on Impactor experiment by the Hayabusa2 spacecraft, which created an artificial crater on the near-Earth asteroid (162173) Ryugu.",
keywords = "Craters, NEAs, Planetary science, Space missions, Spectroscopy",
author = "Deshapriya, {J. D.P.} and Barucci, {M. A.} and Bierhaus, {E. B.} and S. Fornasier and Hasselmann, {P. H.} and F. Merlin and Clark, {B. E.} and A. Praet and M. Fulchignoni and Simon, {A. A.} and Hamilton, {Victoria E.} and Cloutis, {E. A.} and C. Lantz and Zou, {X. D.} and Li, {J. Y.} and Reuter, {D. C.} and Brucato, {J. R.} and G. Poggiali and Daly, {R. T.} and D. Trang and S. Ferrone and DellaGiustina, {D. N.} and Lauretta, {D. S.}",
note = "Funding Information: The authors thank the anonymous reviewers for their comments and remarks that led to the improvement of the paper. The authors extend their grateful thanks to the teams at University of Arizona, NASA and Lockheed Martin for the hitherto achieved success of the OSIRIS-REx mission and wish all the best for the remainder of the mission. This material is based on work supported by NASA under Contract NNM10AA11C issued through the New Frontiers Program. JDPD, MAB, AP, PHH, SF, FM, MF and CL acknowledge funding support from CNES. JDPD extends his thanks to kind friends at Fondation Marjolin for their support. PHH acknowledges funding support by the DIM ACAV+ program of the Region Ile-de-France. EAC thanks the Canadian Space Agency, NSERC, CFI, MRIF, and UWinnipeg for supporting this study. JRB and GP were supported by Italian Space Agency grant agreement n. 2017-37-H.0. The authors acknowledge C.W.V. Wolner for her valuable support. Funding Information: The authors thank the anonymous reviewers for their comments and remarks that led to the improvement of the paper. The authors extend their grateful thanks to the teams at University of Arizona, NASA and Lockheed Martin for the hitherto achieved success of the OSIRIS-REx mission and wish all the best for the remainder of the mission. This material is based on work supported by NASA under Contract NNM10AA11C issued through the New Frontiers Program. JDPD, MAB, AP, PHH, SF, FM, MF and CL acknowledge funding support from CNES . JDPD extends his thanks to kind friends at Fondation Marjolin for their support. PHH acknowledges funding support by the DIM ACAV+ program of the Region Ile-de-France. EAC thanks the Canadian Space Agency , NSERC , CFI , MRIF , and UWinnipeg for supporting this study. JRB and GP were supported by Italian Space Agency grant agreement n. 2017-37-H.0 . The authors acknowledge C.W.V. Wolner for her valuable support. Publisher Copyright: {\textcopyright} 2020 Elsevier Inc.",
year = "2021",
month = mar,
day = "15",
doi = "10.1016/j.icarus.2020.114252",
language = "English (US)",
volume = "357",
journal = "Icarus",
issn = "0019-1035",
publisher = "Academic Press Inc.",
}