TY - JOUR
T1 - Species-dependent effects of border cell and root tip exudates on nematode behavior
AU - Zhao, X.
AU - Schmitt, M.
AU - Hawes, M. C.
PY - 2000
Y1 - 2000
N2 - Effects of border cell and root tip exudates on root knot nematode (Meloidogyne incognita) behavior were examined. In whole-plant assays using pea, M. incognita second-stage juveniles (J2) accumulated rapidly around the 1- to 2-mm apical region ensheathed by border cells, but not in the region of elongation. Within 15 to 30 min, J2 which had accumulated within detached clumps of border cells lost motility and entered into a quiescent state. When border cells (and associated root tip exudates) were washed from pea roots prior to challenge with nematodes, no such accumulation and quiescence was induced. Attraction of nematodes by roots was species dependent: no attraction or accumulation occurred in snap bean. Using a quantitative assay, three categories of chemotaxis responses occurred: attraction (pea and alfalfa cv. Thor), repulsion (alfalfa cv. Moapa 69), and no response (snap bean and alfalfa cv. Lahonton). In contrast, total root tip exudates from all three plant species acted as a repellent for M. incognita in the sand assay. An in vitro assay was developed to characterize the induced quiescence response. When total root tip exudate from the tested legumes (as well as corn) was incubated with J2 populations, >80% of the nematodes lost motility. A similar response occurred in Caenorhabditis elegans. Border cell exudates did not induce or contribute to the induction of quiescence. Cocultivation of pea border cells with M. incognita resulted in changes in border cell shape similar to those observed in response to exogenous plant hormones. No such changes occurred in snap bean border cells. Understanding the cell- and host-specific extracellular recognition that occurs between roots and pathogenic nematodes in the early stages before infection occurs could lead to new avenues for disease control.
AB - Effects of border cell and root tip exudates on root knot nematode (Meloidogyne incognita) behavior were examined. In whole-plant assays using pea, M. incognita second-stage juveniles (J2) accumulated rapidly around the 1- to 2-mm apical region ensheathed by border cells, but not in the region of elongation. Within 15 to 30 min, J2 which had accumulated within detached clumps of border cells lost motility and entered into a quiescent state. When border cells (and associated root tip exudates) were washed from pea roots prior to challenge with nematodes, no such accumulation and quiescence was induced. Attraction of nematodes by roots was species dependent: no attraction or accumulation occurred in snap bean. Using a quantitative assay, three categories of chemotaxis responses occurred: attraction (pea and alfalfa cv. Thor), repulsion (alfalfa cv. Moapa 69), and no response (snap bean and alfalfa cv. Lahonton). In contrast, total root tip exudates from all three plant species acted as a repellent for M. incognita in the sand assay. An in vitro assay was developed to characterize the induced quiescence response. When total root tip exudate from the tested legumes (as well as corn) was incubated with J2 populations, >80% of the nematodes lost motility. A similar response occurred in Caenorhabditis elegans. Border cell exudates did not induce or contribute to the induction of quiescence. Cocultivation of pea border cells with M. incognita resulted in changes in border cell shape similar to those observed in response to exogenous plant hormones. No such changes occurred in snap bean border cells. Understanding the cell- and host-specific extracellular recognition that occurs between roots and pathogenic nematodes in the early stages before infection occurs could lead to new avenues for disease control.
UR - http://www.scopus.com/inward/record.url?scp=0033753409&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033753409&partnerID=8YFLogxK
U2 - 10.1094/PHYTO.2000.90.11.1239
DO - 10.1094/PHYTO.2000.90.11.1239
M3 - Article
C2 - 18944426
AN - SCOPUS:0033753409
SN - 0031-949X
VL - 90
SP - 1239
EP - 1245
JO - Phytopathology
JF - Phytopathology
IS - 11
ER -